Mercurial > hg > Members > kono > Proof > category
changeset 49:d2b5be1143bf
naturality of ε
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Jul 2013 10:13:09 +0900 |
parents | d5a8edad2a83 |
children | b518af3a9b07 |
files | universal-mapping.agda |
diffstat | 1 files changed, 35 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/universal-mapping.agda Tue Jul 23 04:10:42 2013 +0900 +++ b/universal-mapping.agda Tue Jul 23 10:13:09 2013 +0900 @@ -216,7 +216,7 @@ ( F : Obj A -> Obj B ) ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) -> (um : UniversalMapping A B U F η ) -> - NTrans A A identityFunctor ( U ○ FunctorF A B U F η um ) + NTrans A A identityFunctor ( U ○ FunctorF A B U F η um ) nat-η A B U F η um = record { TMap = η ; isNTrans = myIsNTrans } where @@ -224,6 +224,39 @@ F' = FunctorF A B U F η um naturality : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap U (FMap F' f)) o ( η a ) ] ≈ A [ (η b ) o f ] ] - naturality {a} {b} = (IsUniversalMapping.universalMapping ( isUniversalMapping um )) a ( F b ) + naturality {a} {b} {f} = let open ≈-Reasoning (A) in + begin + (FMap U (FMap F' f)) o ( η a ) + ≈⟨⟩ + (FMap U ((_* um) (A [ η b o f ]))) o ( η a ) + ≈⟨ (IsUniversalMapping.universalMapping ( isUniversalMapping um )) a ( F b ) ⟩ + (η b ) o f + ∎ myIsNTrans : IsNTrans A A identityFunctor ( U ○ F' ) η myIsNTrans = record { naturality = naturality } + +nat-ε : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') + ( U : Functor B A ) + ( F : Obj A -> Obj B ) + ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) -> + (um : UniversalMapping A B U F η ) -> + NTrans B B ( FunctorF A B U F η um ○ U) identityFunctor +nat-ε A B U F η um = record { + TMap = ε ; isNTrans = myIsNTrans + } where + F' : Functor A B + F' = FunctorF A B U F η um + ε : ( b : Obj B ) -> Hom B ( FObj F' ( FObj U b) ) b + ε b = (_* um) ( id1 A (FObj U b)) + naturality : {a b : Obj B} {f : Hom B a b } + → B [ B [ f o (ε a) ] ≈ B [(ε b) o (FMap F' (FMap U f)) ] ] + naturality {a} {b} {f} = let open ≈-Reasoning (B) in + sym ( begin + ε b o (FMap F' (FMap U f)) + ≈⟨⟩ + ε b o (FMap F' (FMap U f)) + ≈⟨ {!!} ⟩ + f o (ε a) + ∎ ) + myIsNTrans : IsNTrans B B ( F' ○ U ) identityFunctor ε + myIsNTrans = record { naturality = naturality }