Mercurial > hg > Members > kono > Proof > category
changeset 117:d91e89766a76
T ≃ (U^T ○ F^T)
η^T
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 09:46:56 +0900 |
parents | 0e37b2cf3c73 |
children | 324950507362 |
files | em-category.agda |
diffstat | 1 files changed, 32 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Thu Aug 01 09:24:53 2013 +0900 +++ b/em-category.agda Thu Aug 01 09:46:56 2013 +0900 @@ -221,9 +221,40 @@ distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → ftmap (A [ g o f ]) ≗ ( ftmap g ∙ ftmap f ) distr1 = let open ≈-Reasoning (A) in ( distr T ) +-- T = (U^T ○ F^T) + +Lemma-EM7 : ∀{a b : Obj A} -> (f : Hom A a b ) -> A [ FMap T f ≈ FMap (U^T ○ F^T) f ] +Lemma-EM7 {a} {b} f = let open ≈-Reasoning (A) in + sym ( begin + FMap (U^T ○ F^T) f + ≈⟨⟩ + EMap ( ftmap f ) + ≈⟨⟩ + FMap T f + ∎ ) + +Lemma-EM8 : T ≃ (U^T ○ F^T) +Lemma-EM8 f = Category.Cat.refl (Lemma-EM7 f) + +η^T : NTrans A A identityFunctor ( U^T ○ F^T ) +η^T = record { TMap = \x -> TMap η x ; isNTrans = isNTrans1 } where + naturality1 : {a b : Obj A} {f : Hom A a b} + → A [ A [ ( FMap ( U^T ○ F^T ) f ) o ( TMap η a ) ] ≈ A [ (TMap η b ) o f ] ] + naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in + begin + ( FMap ( U^T ○ F^T ) f ) o ( TMap η a ) + ≈⟨ sym (resp refl-hom (Lemma-EM7 f)) ⟩ + FMap T f o TMap η a + ≈⟨ nat η ⟩ + TMap η b o f + ∎ + isNTrans1 : IsNTrans A A identityFunctor ( U^T ○ F^T ) (\a -> TMap η a) + isNTrans1 = record { naturality = naturality1 } + + --open MResolution ---Resolution^T : MResolution A Eilenberg-MooreCategory T^U_T F^T {η^t} {ε^T} {μ^T} Adj_T +--Resolution^T : MResolution A Eilenberg-MooreCategory T^U F^T {η^t} {ε^T} {μ^T} Adj_T --Resolution^T = record { -- T=UF = Lemma-EM7; -- μ=UεF = Lemma-EM8