Mercurial > hg > Members > kono > Proof > category
changeset 997:d9419216ae0c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Mar 2021 15:51:45 +0900 (2021-03-07) |
parents | 6cd40df80dec |
children | 98f412058488 |
files | src/SetsCompleteness.agda src/yoneda.agda |
diffstat | 2 files changed, 40 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SetsCompleteness.agda Sun Mar 07 11:47:19 2021 +0900 +++ b/src/SetsCompleteness.agda Sun Mar 07 15:51:45 2021 +0900 @@ -202,29 +202,43 @@ open import Relation.Binary.PropositionalEquality open ≡-Reasoning -data cequ {c : Level} {A B : Set c} ( f g : A → B ) : Set c where - celem : (b : B) → (a : A) → f a ≡ b → g a ≡ b → cequ f g +equc : { c₂ : Level} {a b : Obj (Sets {c₂}) } ( f g : Hom (Sets {c₂}) a b ) → Hom Sets b ({y : a} → f y ≡ g y → sequ a b f g ) +equc {_} {a} {b} f g x {y} eq = elem y eq -record cequ' {c : Level} {A B : Set c} ( f g : A → B ) : Set c where - field - cb : B - celem' : (a : A ) → f a ≡ cb → g a ≡ cb - -c-equ : { c₂ : Level} {a b : Obj (Sets {c₂}) } ( f g : Hom (Sets {c₂}) a b ) → b → cequ f g -c-equ {_} {a} {b} f g = {!!} - -SetsIsCoEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → IsCoEqualizer Sets (c-equ f g) f g +SetsIsCoEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → IsCoEqualizer Sets (equc f g) f g SetsIsCoEqualizer {c₂} a b f g = record { - ef=eg = extensionality Sets {!!} + ef=eg = extensionality Sets (λ x → refl ) ; k = k ; ke=h = λ {d} {h} {eq} → ke=h {d} {h} {eq} ; uniqueness = {!!} } where - k : {d : Obj Sets} (h : Hom Sets b d) → Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] → Hom Sets {!!} d - k = {!!} + c : Set c₂ + c = {y : a} → f y ≡ g y → sequ a b f g + e : Hom Sets b c + e x {y} eq = elem y eq + ee : Hom Sets (sequ a b f g) a + ee (elem y eq) = y + k : {d : Obj Sets} (h : Hom Sets b d) → Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] → Hom Sets c d + k {d} h hf=hg ec = {!!} where + cd : ( {y : a} → f y ≡ g y → sequ a b f g ) → d + cd ec = h ( f {!!} ) + ff : sequ a b f g → sequ a d ( Sets [ h o f ]) (Sets [ h o g ]) + ff (elem x eq) = elem x (cong (λ k → k x ) hf=hg ) + gg : {y : a} → f y ≡ g y → sequ a d ( Sets [ h o f ]) (Sets [ h o g ]) + gg {y} eq = ff (ec eq) + hoge : ({y : a} → f y ≡ g y → sequ a d ( Sets [ h o f ]) (Sets [ h o g ]) ) → d + hoge ed = {!!} ke=h : {d : Obj Sets } {h : Hom Sets b d } → { eq : Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] } - → Sets [ Sets [ k h eq o {!!} ] ≈ h ] - ke=h = {!!} + → Sets [ Sets [ k h eq o equc f g ] ≈ h ] + ke=h {d} {h} {eq} = extensionality Sets ( λ x → begin + k h eq ( equc f g x) ≡⟨ {!!} ⟩ + h (f {!!}) ≡⟨ {!!} ⟩ + h (g {!!}) ≡⟨ {!!} ⟩ + h x + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + open Functor
--- a/src/yoneda.agda Sun Mar 07 11:47:19 2021 +0900 +++ b/src/yoneda.agda Sun Mar 07 15:51:45 2021 +0900 @@ -334,6 +334,16 @@ a1 : { c₁ : Level} {A B : Set c₁ } {a : A } { b : B } → a ≅ b → A ≡ B a1 HE.refl = refl +eqObj1' : {a b : Obj A} → Hom A a a ≡ Hom A a b → a ≡ b +eqObj1' {a} {b} ha=hb = {!!} where + open Small small + ylem1 : I + ylem1 = hom→ (id1 A a) + ylem3 : I → Hom A a b + ylem3 i = hom← i + ylem2 : (i : I) → hom→ {a} {a} ( subst (λ k → k) (Relation.Binary.PropositionalEquality.sym ha=hb) (hom← {a} {b} i) ) ≡ i + ylem2 i = {!!} -- hom-rev + open import Category.Cat