Mercurial > hg > Members > kono > Proof > category
changeset 806:dd0d0a201990
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Apr 2019 16:54:18 +0900 |
parents | 979c0bf97a5a |
children | 91a2efb67462 |
files | CCChom.agda discrete.agda |
diffstat | 2 files changed, 32 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Thu Apr 25 17:56:30 2019 +0900 +++ b/CCChom.agda Fri Apr 26 16:54:18 2019 +0900 @@ -590,7 +590,7 @@ open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) open import discrete - open graphtocat + open graphtocat hiding ( _++_ ) open Graph @@ -611,33 +611,40 @@ _・_ : {a b c : Objs } → Arrow b c → Arrow a b → Arrow a c _* : {a b c : Objs } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) + record SM : Set (suc Level.zero) where + field + graph : Graph + sobj : vertex graph → Set + smap : { a b : vertex graph } → edge graph a b → sobj a → sobj b + + open SM -- positive intutionistic calculus - DX : (G : Graph) → Category Level.zero Level.zero Level.zero - DX G = GraphtoCat ( record { vertex = Objs {G} ; edge = Arrow {G}} ) + DX : (G : SM) → Category Level.zero Level.zero Level.zero + DX G = GraphtoCat ( record { vertex = Objs {graph G} ; edge = Arrow {graph G}} ) -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ - fobj : {G : Graph} ( a : Obj (DX G) ) → Set - fobj {G} (atom x) = vertex G - fobj (a ∧ b) = (fobj a ) /\ (fobj b ) - fobj (a <= b) = fobj b → fobj a + fobj : {G : SM} ( a : Obj (DX G) ) → Set + fobj {G} (atom x) = sobj G x + fobj {G} (a ∧ b) = (fobj {G} a ) /\ (fobj {G} b ) + fobj {G} (a <= b) = fobj {G} b → fobj {G} a fobj ⊤ = One' {-# TERMINATING #-} - fmap : {G : Graph} { a b : Obj (DX G) } → Hom (DX G) a b → fobj a → fobj b - fmap {G} {a} {a} (id a) = id1 Sets (fobj a) where open ≈-Reasoning (Sets {Level.zero}) - fmap {G} {a} {(atom b)} (next (arrow x) f) = λ _ → b + fmap : {G : SM} { a b : Obj (DX G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b + fmap {G} {a} {a} (id a) = λ z → z + fmap {G} {a} {(atom b)} (next (arrow x) f) = λ z → smap G x ( fmap f z ) fmap {G} {a} {b} (next (id b) f) = fmap f fmap {G} {a} {⊤} (next (○ b) f) = λ _ → OneObj' - fmap {G} {a} {b} (next π f) = λ z → proj₁ ( fmap f z ) + fmap {G} {a} {b} (next {a} {.b ∧ y} {b} π f) = λ z → proj₁ ( fmap f z ) fmap {G} {a} {b} (next π' f) = λ z → proj₂ ( fmap f z ) fmap {G} {a} {b} (next ε f) = λ z → ( proj₁ (fmap f z) )( proj₂ (fmap f z) ) - fmap {G} {a} {b} (next (f ・ g) h) = λ z → fmap ( next f (next g h ) ) z + fmap {G} {a} {b} (next (f ・ g) h) = λ z → fmap (next f (next g h)) z fmap {G} {a} {(_ ∧ _)} (next < f , g > h) = λ z → ( fmap (next f h) z , fmap (next g h) z) fmap {G} {a} {(c <= b)} (next {_} {d} (f *) g ) = λ x y → fmap (next f (id (d ∧ b))) ( fmap g x , y ) - CS : {G : Graph } → Functor (DX G) (Sets {Level.zero}) + CS : {G : SM } → Functor (DX G) (Sets {Level.zero}) FObj CS a = fobj a FMap (CS {G}) {a} {b} f = fmap {G} {a} {b} f isFunctor (CS {G}) = isf where @@ -654,27 +661,19 @@ Sets [ fmap (next x g) o fmap (Chain.id a) ] ∎ where open ≈-Reasoning Sets distrCS {a} {b} {b} {f} {id b} = refl - distrCS {a} {b} {.(atom _)} {f} {next (arrow x) g} = refl - distrCS {a} {b} {c} {f} {next (id c) g} = begin - fmap (DX G [ next (Arrow.id c) g o f ]) - ≈⟨ {!!} ⟩ - Sets [ fmap (next (Arrow.id c) g) o fmap f ] - ∎ where open ≈-Reasoning Sets + distrCS {a} {b} {atom z} {f} {next (arrow x) g} = distrCS + distrCS {a} {b} {c} {f} {next (id c) g} = distrCS distrCS {a} {b} {.⊤} {f} {next (○ a₁) g} = begin fmap (DX G [ next (○ a₁) g o f ]) ≈⟨ extensionality Sets ( λ x → refl ) ⟩ Sets [ fmap (next (○ a₁) g) o fmap f ] ∎ where open ≈-Reasoning Sets - distrCS {a} {b} {c} {f} {next π g} = {!!} - distrCS {a} {b} {c} {f} {next π' g} = {!!} - distrCS {a} {b} {c} {f} {next ε g} = {!!} - distrCS {a} {b} {.(_ ∧ _)} {f} {next < x , x₁ > g} = {!!} - distrCS {a} {b} {c} {f} {next (x ・ x₁) g} = extensionality Sets ( λ z → begin - fmap (DX G [ next (x ・ x₁) g o f ]) z - ≡⟨ {!!} ⟩ - ( Sets [ fmap (next (x ・ x₁) g) o fmap f ] ) z - ∎ ) where open ≡-Reasoning - distrCS {a} {b} {.(_ <= _)} {f} {next (x *) g} = {!!} + distrCS {a} {b} {c} {f} {next {.b} {c ∧ x} {c} π g} = distrCS + distrCS {a} {b} {c} {f} {next π' g} = distrCS + distrCS {a} {b} {c} {f} {next ε g} = distrCS + distrCS {a} {b} {.(_ ∧ _)} {f} {next < x , x₁ > g} = distrCS + distrCS {a} {b} {c} {f} {next (x ・ y) g} = distrCS + distrCS {a} {b} {.(_ <= _)} {f} {next (x *) g} = distrCS isf : IsFunctor (DX G) Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl
--- a/discrete.agda Thu Apr 25 17:56:30 2019 +0900 +++ b/discrete.agda Fri Apr 26 16:54:18 2019 +0900 @@ -19,6 +19,10 @@ id : ( a : Graph.vertex g ) → Chain a a next : { a b c : Graph.vertex g } → (Graph.edge g b c ) → Chain {g} a b → Chain a c + _++_ : { G : Graph} {a b c : Graph.vertex G } (f : Chain {G} b c ) → (g : Chain {G} a b) → Chain {G} a c + id _ ++ f = f + (next x f) ++ g = next x ( f ++ g ) + GraphtoCat : (G : Graph ) → Category Level.zero Level.zero Level.zero GraphtoCat G = record { Obj = Graph.vertex G ; @@ -37,9 +41,6 @@ open Chain obj = Graph.vertex G hom = Graph.edge G - _++_ : {a b c : obj } (f : Chain {G} b c ) → (g : Chain {G} a b) → Chain {G} a c - id _ ++ f = f - (next x f) ++ g = next x ( f ++ g ) identityL : {A B : Graph.vertex G} {f : Chain A B} → (id B ++ f) ≡ f identityL = refl