changeset 577:de530823f80b

dead end
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 28 Apr 2017 17:13:29 +0900
parents 9455768b05f4
children
files SetsCompleteness.agda
diffstat 1 files changed, 13 insertions(+), 8 deletions(-) [+]
line wrap: on
line diff
--- a/SetsCompleteness.agda	Thu Apr 27 20:54:16 2017 +0900
+++ b/SetsCompleteness.agda	Fri Apr 28 17:13:29 2017 +0900
@@ -199,24 +199,29 @@
 Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) )   
     → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ)  )) Γ
 Cone C I s  Γ =  record {
-               TMap = λ i →  λ se → proj ( ipp se ) i
+               TMap = λ i →  λ se → proj (ipp se) i
              ; isNTrans = record { commute = commute1 }
       } where
-         commute1 :  {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (ipp se) a) ] ≈
+         commute1 :  {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (ipp se ) a) ] ≈
                 Sets [ (λ se → proj (ipp se) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ]
          commute1 {a} {b} {f} =   extensionality Sets  ( λ  se  →  begin  
                    (Sets [ FMap Γ f o (λ se₁ → proj (ipp se) a) ]) se
              ≡⟨⟩
                    FMap Γ f (proj (ipp se) a)
-             ≡⟨  ≡cong ( λ g → FMap Γ g (proj (ipp se) a))  (sym ( hom-iso s  ) ) ⟩
+             ≡⟨  ≡cong ( λ g → FMap Γ g (sproj se a))  (sym ( hom-iso s  ) ) ⟩
                    FMap Γ  (hom← s ( hom→ s f))  (proj (ipp se) a)
              ≡⟨  {!!}    ⟩
-                  ((Sets [ (λ x → ΓMap s Γ (hom→ s f) (proj x a)) o equ ]) (slequ se (hom→ s f)))
-
+                  ((Sets [ (λ x → ΓMap s Γ (hom→ s f) (sproj x a)) o equ ]) {!!} )
              ≡⟨  fe=ge0 ( slequ se (hom→ s f ) ) ⟩
-                  {!!}
-             ≡⟨  {!!}    ⟩
-                   proj (ipp se) b
+                  (Sets [ (λ x → proj x b) o equ ]) (slequ se (hom→ s f) )
+             ≡⟨⟩
+                  proj ( equ (slequ se (hom→ s f) ) ) b
+             ≡⟨⟩
+                  proj ( record { proj = ? } ) b
+             ≡⟨ {!!} ⟩
+                  proj ( record { proj = sproj se } ) b
+             ≡⟨⟩
+                  proj (ipp se) b
              ≡⟨⟩
                   (Sets [ (λ se₁ → proj (ipp se) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se
              ∎  ) where