Mercurial > hg > Members > kono > Proof > category
changeset 703:df3f1aae984f
Monidal functor done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Nov 2017 04:12:14 +0900 |
parents | d16327b48b83 |
children | b48c2d1c0796 |
files | monoidal.agda |
diffstat | 1 files changed, 82 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Wed Nov 22 02:55:36 2017 +0900 +++ b/monoidal.agda Wed Nov 22 04:12:14 2017 +0900 @@ -99,8 +99,87 @@ m-bi : Functor ( C × C ) C isMonoidal : IsMonoidal C m-i m-bi +Functor● : {c₁ c₂ ℓ : Level} (C D : Category c₁ c₂ ℓ) ( N : Monoidal D ) + ( MF : Functor C D ) → Functor ( C × C ) D +Functor● C D N MF = record { + FObj = λ x → (FObj MF (proj₁ x) ) ● (FObj MF (proj₂ x) ) + ; FMap = λ {x : Obj ( C × C ) } {y} f → FMap (Monoidal.m-bi N) ( FMap MF (proj₁ f ) , FMap MF (proj₂ f) ) + ; isFunctor = record { + ≈-cong = ≈-cong + ; identity = identity + ; distr = distr + } + } where + _●_ : (x y : Obj D ) → Obj D + _●_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal N) ) x y + ≈-cong : {a b : Obj (C × C)} {f g : Hom (C × C) a b} → (C × C) [ f ≈ g ] → + D [ FMap (Monoidal.m-bi N) (FMap MF (proj₁ f) , FMap MF (proj₂ f)) + ≈ FMap (Monoidal.m-bi N) (FMap MF (proj₁ g) , FMap MF (proj₂ g)) ] + ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning D in begin + FMap (Monoidal.m-bi N) (FMap MF (proj₁ f) , FMap MF (proj₂ f)) + ≈⟨ fcong (Monoidal.m-bi N) ( fcong MF ( proj₁ f≈g ) , fcong MF ( proj₂ f≈g )) ⟩ + FMap (Monoidal.m-bi N) (FMap MF (proj₁ g) , FMap MF (proj₂ g)) + ∎ + identity : {a : Obj (C × C)} → D [ FMap (Monoidal.m-bi N) (FMap MF (proj₁ (id1 (C × C) a)) , FMap MF (proj₂ (id1 (C × C) a))) + ≈ id1 D (FObj MF (proj₁ a) ● FObj MF (proj₂ a)) ] + identity {a} = let open ≈-Reasoning D in begin + FMap (Monoidal.m-bi N) (FMap MF (proj₁ (id1 (C × C) a)) , FMap MF (proj₂ (id1 (C × C) a))) + ≈⟨ fcong (Monoidal.m-bi N) ( IsFunctor.identity (isFunctor MF ) , IsFunctor.identity (isFunctor MF )) ⟩ + FMap (Monoidal.m-bi N) ( id1 D (FObj MF (proj₁ a)) , id1 D (FObj MF (proj₂ a))) + ≈⟨ IsFunctor.identity (isFunctor (Monoidal.m-bi N)) ⟩ + id1 D (FObj MF (proj₁ a) ● FObj MF (proj₂ a)) + ∎ + distr : {a b c : Obj (C × C)} {f : Hom (C × C) a b} {g : Hom (C × C) b c} → + D [ FMap (Monoidal.m-bi N) (FMap MF (proj₁ ((C × C) [ g o f ])) , FMap MF (proj₂ ((C × C) [ g o f ]))) + ≈ D [ FMap (Monoidal.m-bi N) (FMap MF (proj₁ g) , FMap MF (proj₂ g)) o FMap (Monoidal.m-bi N) (FMap MF (proj₁ f) , FMap MF (proj₂ f)) ] ] + distr {a} {b} {c} {f} {g} = let open ≈-Reasoning D in begin + FMap (Monoidal.m-bi N) (FMap MF (proj₁ ((C × C) [ g o f ])) , FMap MF (proj₂ ((C × C) [ g o f ]))) + ≈⟨ fcong (Monoidal.m-bi N) ( IsFunctor.distr ( isFunctor MF) , IsFunctor.distr ( isFunctor MF )) ⟩ + FMap (Monoidal.m-bi N) ( D [ FMap MF (proj₁ g) o FMap MF (proj₁ f) ] , D [ FMap MF (proj₂ g) o FMap MF (proj₂ f) ] ) + ≈⟨ IsFunctor.distr ( isFunctor (Monoidal.m-bi N)) ⟩ + FMap (Monoidal.m-bi N) (FMap MF (proj₁ g) , FMap MF (proj₂ g)) o FMap (Monoidal.m-bi N) (FMap MF (proj₁ f) , FMap MF (proj₂ f)) + ∎ -open import Category.Cat +Functor⊗ : {c₁ c₂ ℓ : Level} (C D : Category c₁ c₂ ℓ) ( M : Monoidal C ) + ( MF : Functor C D ) → Functor ( C × C ) D +Functor⊗ C D M MF = record { + FObj = λ x → FObj MF ( proj₁ x ⊗ proj₂ x ) + ; FMap = λ {a} {b} f → FMap MF ( FMap (Monoidal.m-bi M) ( proj₁ f , proj₂ f) ) + ; isFunctor = record { + ≈-cong = ≈-cong + ; identity = identity + ; distr = distr + } + } where + _⊗_ : (x y : Obj C ) → Obj C + _⊗_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal M) ) x y + ≈-cong : {a b : Obj (C × C)} {f g : Hom (C × C) a b} → (C × C) [ f ≈ g ] → + D [ FMap MF (FMap (Monoidal.m-bi M) (proj₁ f , proj₂ f)) ≈ FMap MF (FMap (Monoidal.m-bi M) (proj₁ g , proj₂ g)) ] + ≈-cong {a} {b} {f} {g} f≈g = IsFunctor.≈-cong (isFunctor MF ) ( IsFunctor.≈-cong (isFunctor (Monoidal.m-bi M) ) f≈g ) + identity : {a : Obj (C × C)} → D [ FMap MF (FMap (Monoidal.m-bi M) (proj₁ (id1 (C × C) a) , proj₂ (id1 (C × C) a))) + ≈ id1 D (FObj MF (proj₁ a ⊗ proj₂ a)) ] + identity {a} = let open ≈-Reasoning D in begin + FMap MF (FMap (Monoidal.m-bi M) (proj₁ (id1 (C × C) a) , proj₂ (id1 (C × C) a))) + ≈⟨⟩ + FMap MF (FMap (Monoidal.m-bi M) (id1 (C × C) a ) ) + ≈⟨ fcong MF ( IsFunctor.identity (isFunctor (Monoidal.m-bi M) )) ⟩ + FMap MF (id1 C (proj₁ a ⊗ proj₂ a)) + ≈⟨ IsFunctor.identity (isFunctor MF) ⟩ + id1 D (FObj MF (proj₁ a ⊗ proj₂ a)) + ∎ + distr : {a b c : Obj (C × C)} {f : Hom (C × C) a b} {g : Hom (C × C) b c} → D [ + FMap MF (FMap (Monoidal.m-bi M) (proj₁ ((C × C) [ g o f ]) , proj₂ ((C × C) [ g o f ]))) + ≈ D [ FMap MF (FMap (Monoidal.m-bi M) (proj₁ g , proj₂ g)) o FMap MF (FMap (Monoidal.m-bi M) (proj₁ f , proj₂ f)) ] ] + distr {a} {b} {c} {f} {g} = let open ≈-Reasoning D in begin + FMap MF (FMap (Monoidal.m-bi M) (proj₁ ((C × C) [ g o f ]) , proj₂ ((C × C) [ g o f ]))) + ≈⟨⟩ + FMap MF (FMap (Monoidal.m-bi M) ( (C × C) [ g o f ] )) + ≈⟨ fcong MF ( IsFunctor.distr (isFunctor (Monoidal.m-bi M))) ⟩ + FMap MF (C [ FMap (Monoidal.m-bi M) g o FMap (Monoidal.m-bi M) f ]) + ≈⟨ IsFunctor.distr ( isFunctor MF ) ⟩ + FMap MF (FMap (Monoidal.m-bi M) (proj₁ g , proj₂ g)) o FMap MF (FMap (Monoidal.m-bi M) (proj₁ f , proj₂ f)) + ∎ + record IsMonoidalFunctor {c₁ c₂ ℓ : Level} {C D : Category c₁ c₂ ℓ} ( M : Monoidal C ) ( N : Monoidal D ) ( MF : Functor C D ) @@ -115,25 +194,9 @@ _■_ : {a b c d : Obj D } ( f : Hom D a c ) ( g : Hom D b d ) → Hom D ( a ● b ) ( c ● d ) _■_ f g = FMap (Monoidal.m-bi N) ( f , g ) F● : Functor ( C × C ) D - F● = record { - FObj = λ x → (FObj MF (proj₁ x) ) ● (FObj MF (proj₂ x) ) - ; FMap = λ {x : Obj ( C × C ) } {y} f → FMap (Monoidal.m-bi N) ( FMap MF (proj₁ f ) , FMap MF (proj₂ f) ) - ; isFunctor = record { - ≈-cong = {!!} - ; identity = {!!} - ; distr = {!!} - } - } + F● = Functor● C D N MF F⊗ : Functor ( C × C ) D - F⊗ = record { - FObj = λ x → FObj MF ( proj₁ x ⊗ proj₂ x ) - ; FMap = λ {a} {b} f → FMap MF ( FMap (Monoidal.m-bi M) ( proj₁ f , proj₂ f) ) - ; isFunctor = record { - ≈-cong = {!!} - ; identity = {!!} - ; distr = {!!} - } - } + F⊗ = Functor⊗ C D M MF field φab : NTrans ( C × C ) D F● F⊗ open Iso @@ -177,7 +240,6 @@ comm1 : {a b c : Obj C } → D [ D [ φAB⊗C {a} {b} {c} o D [ 1●φBC o αD ] ] ≈ D [ FαC o D [ φA⊗BC o φAB●1 ] ] ] comm-idr : {a b : Obj C } → D [ D [ FρC {a} {b} o D [ φAIC {a} {b} o 1●ψ{a} {b} ] ] ≈ ρD {a} {b} ] comm-idl : {a b : Obj C } → D [ D [ FλD {a} {b} o D [ φICB {a} {b} o ψ●1 {a} {b} ] ] ≈ λD {a} {b} ] - where record MonoidalFunctor {c₁ c₂ ℓ : Level} {C D : Category c₁ c₂ ℓ} ( M : Monoidal C ) ( N : Monoidal D ) : Set ( suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁)) where