Mercurial > hg > Members > kono > Proof > category
changeset 662:e1d54c0f73a7
move InitialObject to cat-utility
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 12 Aug 2017 16:35:58 +0900 |
parents | 04ffb37df2af |
children | 855e497a9c8f |
files | cat-utility.agda freyd2.agda limit-to.agda |
diffstat | 3 files changed, 8 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/cat-utility.agda Wed Jul 19 22:27:35 2017 +0900 +++ b/cat-utility.agda Sat Aug 12 16:35:58 2017 +0900 @@ -378,3 +378,11 @@ limit-u : ( Γ : Functor I A ) -> NTrans I A ( K A I (limit-c Γ )) Γ limit-u Γ = t0 ( climit Γ) + +-- initial object + + record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where + field + initial : ∀( a : Obj A ) → Hom A i a + uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] +
--- a/freyd2.agda Wed Jul 19 22:27:35 2017 +0900 +++ b/freyd2.agda Sat Aug 12 16:35:58 2017 +0900 @@ -80,7 +80,6 @@ reprId← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] open Representable -open import freyd _↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' } → ( F G : Functor A B ) @@ -88,9 +87,7 @@ _↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory where open import Comma1 F G -open SmallFullSubcategory open Complete -open PreInitial open HasInitialObject open import Comma1 open CommaObj @@ -241,9 +238,6 @@ -- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable -open SmallFullSubcategory -open PreInitial - -- if U preserve limit, K{*}↓U has initial object from freyd.agda ≡-cong = Relation.Binary.PropositionalEquality.cong @@ -374,8 +368,6 @@ module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) (U : Functor A B ) - (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) - (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) ( i : (b : Obj B) → Obj ( K B A b ↓ U) ) (In : (b : Obj B) → HasInitialObject ( K B A b ↓ U) (i b) ) (LP : LimitPreserve A I B U ) where