Mercurial > hg > Members > kono > Proof > category
changeset 553:e33282817cb7
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Apr 2017 15:07:56 +0900 |
parents | 09b1f66f7d7c |
children | 9e6aa4d77c3e |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 19 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sat Apr 08 11:35:51 2017 +0900 +++ b/SetsCompleteness.agda Sat Apr 08 15:07:56 2017 +0900 @@ -168,8 +168,9 @@ {i j : Obj C } → ( f : I → I ) → ΓObj s Γ i → ΓObj s Γ j ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f ) -record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I )→ sobj i → sobj j ) - ( Equ : { i j : OC } → { f : I → I } → sequ (sobj i) (sobj j) ( smap f ) ( smap (λ x → x ) )) : Set c₂ where +record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I )→ sobj i → sobj j ) + ( snequ : { i j : OC } → sequ (sobj i) (sobj j) ( smap (λ x → x ) ) ( smap (λ x → x ) ) ) + : Set c₂ where field snmap : ( i : OC ) → sobj i sncommute : { i j : OC } → ( f : I → I ) → smap f ( snmap i ) ≡ snmap j @@ -179,15 +180,16 @@ open import HomReasoning open NTrans -Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → NTrans C Sets (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ) {!!} ) ) Γ -Cone C I s Γ = record { +Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + ( Cequ : { i j : Obj C} → sequ (ΓObj s Γ i) (ΓObj s Γ j) ( ΓMap s Γ (λ x → x ) ) ( ΓMap s Γ (λ x → x ) ) ) + → NTrans C Sets (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ) Cequ ) ) Γ +Cone C I s Γ cequ = record { TMap = λ i → λ sn → snmap sn i ; isNTrans = record { commute = comm1 } } where comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ sn → snmap sn a) ] ≈ - Sets [ (λ sn → (snmap sn b)) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ) {!!} )) f ] ] + Sets [ (λ sn → (snmap sn b)) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ) cequ )) f ] ] comm1 {a} {b} {f} = extensionality Sets ( λ sn → begin FMap Γ f (snmap sn a ) ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn a ))) (sym ( hom-iso s )) ⟩ @@ -204,8 +206,8 @@ SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { - a0 = snat (ΓObj s Γ) (ΓMap s Γ) {!!} - ; t0 = Cone C I s Γ + a0 = snat (ΓObj s Γ) (ΓMap s Γ) (elem ? refl ) + ; t0 = Cone C I s Γ {!!} ; isLimit = record { limit = limit1 ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} @@ -213,16 +215,17 @@ } } where a0 : Obj Sets - a0 = snat (ΓObj s Γ) (ΓMap s Γ) {!!} + a0 = snat (ΓObj s Γ) (ΓMap s Γ) ( λ {i j } → elem {!!} refl ) comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) - limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ) {!!} ) - limit1 a t = λ x → record { snmap = λ i → ( TMap t i ) x ; - sncommute = λ f → comm2 t f } - t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ] + limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ) {!!}) + limit1 a t = λ x → record { + snmap = λ i → ( TMap t i ) x + ; sncommute = λ f → comm2 t f } + t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ {!!}) i o limit1 a t ] ≈ TMap t i ] t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin - ( Sets [ TMap (Cone C I s Γ) i o limit1 a t ]) x + ( Sets [ TMap (Cone C I s Γ {!!}) i o limit1 a t ]) x -- ≡⟨⟩ -- snmap ( record { snmap = λ i → ( TMap t i ) x ; sncommute = λ {i j} f → comm2 {a} {x} {i} {j} t f } ) i ≡⟨⟩ @@ -231,13 +234,13 @@ open import Relation.Binary.PropositionalEquality open ≡-Reasoning limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ) {!!} )} → - ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] + ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ {!!}) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } ≡⟨ {!!} (ΓObj s Γ) (ΓMap s Γ) {!!} {!!} {!!} ⟩ - record { snmap = λ i → snmap (f x ) i ; sncommute = sncommute (f x ) } + record { snmap = λ i → snmap (f x ) i ; sncommute = sncommute (f x ) } ≡⟨⟩ f x ∎ ) where