Mercurial > hg > Members > kono > Proof > category
changeset 743:e33e9ae1514b
.. give up Monad to monoidal functor in general
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 05 Dec 2017 17:04:03 +0900 |
parents | 20f2700a481c |
children | c8e9786c273a |
files | monad→monoidal.agda |
diffstat | 1 files changed, 16 insertions(+), 63 deletions(-) [+] |
line wrap: on
line diff
--- a/monad→monoidal.agda Tue Dec 05 01:57:41 2017 +0900 +++ b/monad→monoidal.agda Tue Dec 05 17:04:03 2017 +0900 @@ -15,68 +15,6 @@ open import monoidal open import Category.Cat -Monad→MonoidalFunctor : {c₁ c₂ ℓ : Level} (C : Category c₁ c₂ ℓ) ( m : Monad C ) ( monoidal : Monoidal C ) - → ( ε : NTrans C C (Monad.T m ) identityFunctor ) -- assuming C = kleisli - → MonoidalFunctor monoidal monoidal -Monad→MonoidalFunctor C M Mono ε-nat = record { - MF = Monad.T M - ; ψ = NTrans.TMap (Monad.η M ) ( Monoidal.m-i Mono ) - ; isMonodailFunctor = record { - φab = record { TMap = φab - ; isNTrans = record { commute = commute - } } - ; associativity = {!!} - ; unitarity-idr = {!!} - ; unitarity-idl = {!!} - } - } where - T = Monad.T M - μ = TMap ( Monad.μ M ) - η = TMap ( Monad.η M ) - -- ε-nat' : NTrans C C (Monad.T M ) identityFunctor - -- ε-nat' = record { - -- TMap = λ x → {!!} - -- ; isNTrans = record { commute = {!!} } } - ε = TMap ε-nat - _⊗_ : (x y : Obj C ) → Obj C - _⊗_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal Mono) ) x y - _□_ : {a b c d : Obj C } ( f : Hom C a c ) ( g : Hom C b d ) → Hom C ( a ⊗ b ) ( c ⊗ d ) - _□_ f g = FMap (Monoidal.m-bi Mono) ( f , g ) - -- ( T x , T y ) → T ( x , y ) - φab : (a : Obj (C × C)) → Hom C (FObj (Functor● C C Mono (Monad.T M)) a) (FObj (Functor⊗ C C Mono (Monad.T M)) a) - φab (x , y) = C [ FMap T ( ε x □ ε y) o η ( FObj T x ⊗ FObj T y) ] - commute : {a b : Obj (C × C)} {f : Hom (C × C) a b} → - C [ C [ FMap (Functor⊗ C C Mono (Monad.T M)) f o φab a ] ≈ C [ φab b o FMap (Functor● C C Mono (Monad.T M)) f ] ] - commute {a} {b} {f} = begin - FMap (Functor⊗ C C Mono (Monad.T M)) f o φab a - ≈⟨⟩ - FMap T (proj₁ f □ proj₂ f) o ( FMap T (ε (proj₁ a) □ ε (proj₂ a)) o (η ( FObj T (proj₁ a) ⊗ FObj T (proj₂ a)))) - ≈⟨ assoc ⟩ - ( FMap T (proj₁ f □ proj₂ f) o FMap T (ε (proj₁ a) □ ε (proj₂ a))) o η ( FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈↑⟨ car (distr T ) ⟩ - FMap T ( (proj₁ f □ proj₂ f) o (ε (proj₁ a) □ ε (proj₂ a))) o η ( FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈↑⟨ car ( fcong T ( distr (Monoidal.m-bi Mono) )) ⟩ - FMap T ( FMap (Monoidal.m-bi Mono) ((C × C) [ proj₁ f , proj₂ f o ε (proj₁ a) , ε (proj₂ a) ]) ) o η ( FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈⟨⟩ - FMap T ( ( proj₁ f o ε (proj₁ a) ) □ ( proj₂ f o ε (proj₂ a) )) o η ( FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈⟨ car ( fcong T ( fcong (Monoidal.m-bi Mono) ( nat ε-nat , nat ε-nat ))) ⟩ - FMap T ( (ε (proj₁ b) o (FMap T (proj₁ f)) ) □ ( ε (proj₂ b) o (FMap T (proj₂ f)))) o η (FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈⟨⟩ - FMap T (FMap (Monoidal.m-bi Mono) ((C × C) [ ε (proj₁ b) , ε (proj₂ b) o FMap T (proj₁ f) , FMap T (proj₂ f) ])) o η (FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈⟨ car ( fcong T ( distr (Monoidal.m-bi Mono) )) ⟩ - FMap T (C [ ε (proj₁ b) □ ε (proj₂ b) o FMap T (proj₁ f) □ FMap T (proj₂ f) ]) o η (FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈⟨ car ( distr T ) ⟩ - ( FMap T (ε (proj₁ b) □ ε (proj₂ b)) o FMap T ((FMap T (proj₁ f) □ FMap T (proj₂ f)))) o η (FObj T (proj₁ a) ⊗ FObj T (proj₂ a)) - ≈↑⟨ assoc ⟩ - FMap T (ε (proj₁ b) □ ε (proj₂ b)) o ( FMap T ((FMap T (proj₁ f) □ FMap T (proj₂ f))) o η (FObj T (proj₁ a) ⊗ FObj T (proj₂ a))) - ≈⟨ cdr ( nat ( Monad.η M )) ⟩ - FMap T (ε (proj₁ b) □ ε (proj₂ b)) o ( η (FObj T (proj₁ b) ⊗ FObj T (proj₂ b)) o FMap T (proj₁ f) □ FMap T (proj₂ f )) - ≈⟨ assoc ⟩ - ( FMap T (ε (proj₁ b) □ ε (proj₂ b)) o η (FObj T (proj₁ b) ⊗ FObj T (proj₂ b))) o (FMap T (proj₁ f) □ FMap T (proj₂ f )) - ≈⟨⟩ - φab b o FMap (Functor● C C Mono (Monad.T M)) f - ∎ - where open ≈-Reasoning C open import Category.Sets import Relation.Binary.PropositionalEquality @@ -106,6 +44,7 @@ φ = HaskellMonoidalFunctor.φ ( Monad→HaskellMonoidalFunctor monad ) isM = Monoidal.isMonoidal MonoidalSets μ = NTrans.TMap (Monad.μ monad) + η = NTrans.TMap (Monad.η monad) open IsMonoidal id : { a : Obj (Sets {l}) } → a → a id x = x @@ -152,7 +91,21 @@ → φ (a , φ (b , c)) ≡ FMap F (Iso.≅→ (mα-iso isM)) (φ (φ (a , b) , c)) assocφ = {!!} idrφ : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) ≡ x - idrφ = {!!} + idrφ {a} {x} = begin + FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) + ≡⟨⟩ + FMap F proj₁ (μ (a * One) (FMap F (λ f → FMap F (λ g → f , g) (η One OneObj)) x)) + ≡⟨ {!!} ⟩ + FMap F proj₁ (μ (a * One) (FMap F (λ f → η ( a * One ) (f , OneObj ) ) x ) ) + ≡⟨ {!!} ⟩ + FMap F proj₁ ( FMap F (λ f → {!!}) ( μ {!!} (η {!!} x ) ) ) + ≡⟨ {!!} ⟩ + id1 Sets {!!} x + ≡⟨ {!!} ⟩ + x + ∎ where + open Relation.Binary.PropositionalEquality + open Relation.Binary.PropositionalEquality.≡-Reasoning idlφ : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , x)) ≡ x idlφ = {!!}