Mercurial > hg > Members > kono > Proof > category
changeset 20:e34c93046acf
clean up list-nat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Jul 2013 12:28:14 +0900 |
parents | 93c0a2565d53 |
children | a7b0f7ab9881 |
files | list-nat.agda |
diffstat | 1 files changed, 4 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/list-nat.agda Fri Jul 12 12:24:29 2013 +0900 +++ b/list-nat.agda Fri Jul 12 12:28:14 2013 +0900 @@ -38,7 +38,7 @@ eq-cons : ∀{n} {A : Set n} {x y : List A} ( a : A ) -> x == y -> ( a :: x ) == ( a :: y ) eq-cons a z = cong1 ( \x -> ( a :: x) ) z -trans-list : ∀{n} {A : Set n} {x y z : List A} { a : A } -> x == y -> y == z -> x == z +trans-list : ∀{n} {A : Set n} {x y z : List A} -> x == y -> y == z -> x == z trans-list reflection reflection = reflection @@ -58,7 +58,7 @@ list-assoc (x :: xs) ys zs = eq-cons x ( list-assoc xs ys zs ) -module ==-Reasoning {n} (A : Set n) where +module ==-Reasoning {n} (A : Set n ) where infixr 2 _∎ infixr 2 _==⟨_⟩_ @@ -77,14 +77,14 @@ x == y → y IsRelatedTo z → x IsRelatedTo z _ ==⟨ x≈y ⟩ relTo y≈z = relTo (trans-list x≈y y≈z) - _∎ : ∀ {a} {A1 : Set a} (x : List A ) → x IsRelatedTo x + _∎ : (x : List A ) → x IsRelatedTo x _∎ _ = relTo reflection lemma11 : ∀{n} (A : Set n) ( x : List A ) -> x == x lemma11 A x = let open ==-Reasoning A in begin x ∎ -++-assoc : (L : Set) ( xs ys zs : List L ) -> (xs ++ ys) ++ zs == xs ++ (ys ++ zs) +++-assoc : ∀{n} (L : Set n) ( xs ys zs : List L ) -> (xs ++ ys) ++ zs == xs ++ (ys ++ zs) ++-assoc A [] ys zs = let open ==-Reasoning A in begin -- to prove ([] ++ ys) ++ zs == [] ++ (ys ++ zs) ( [] ++ ys ) ++ zs