changeset 867:e47045bfc37a

≡ is no good because of non regularized terms
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 07 Apr 2020 18:01:29 +0900
parents 2ff6242aed06
children 35b2412a68e4
files CCCGraph1.agda
diffstat 1 files changed, 25 insertions(+), 46 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Tue Apr 07 15:58:43 2020 +0900
+++ b/CCCGraph1.agda	Tue Apr 07 18:01:29 2020 +0900
@@ -68,32 +68,35 @@
    refl-<r> refl = refl
 
    _・_ :  {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c
-   id a ・ g = g
+   id a ・ g = eval g
    ○ a ・ g = ○ _
    < f , g > ・  h = <  f ・ h  ,  g ・ h  >
-   iv f (id _) ・ h = iv f h
+   iv f (id _) ・ h = eval ( iv f h )
    iv π < g , g₁ > ・  h = g ・ h
    iv π' < g , g₁ > ・  h = g₁ ・ h
    iv ε < g , g₁ > ・  h = iv ε < g ・ h , g₁ ・ h >
    iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > 
    iv f ( (○ a)) ・ g = iv f ( ○ _ )
-   iv x y ・ id a = iv x y
-   iv f (iv f₁ g) ・ h = iv f (  iv f₁ g ・ h )
+   iv x y ・ id a = eval (iv x y)
+   iv f (iv f₁ g) ・ h with eval (iv f₁ g ・ h )
+   (iv f (iv f₁ g) ・ h) | id a = iv f (id a)
+   (iv f (iv f₁ g) ・ h) | ○ a = iv f (○ a)
+   (iv π (iv f₁ g) ・ h) | < t , t₁ > = t
+   (iv π' (iv f₁ g) ・ h) | < t , t₁ > = t₁
+   (iv f (iv f₁ g) ・ h) | < t , t₁ > = iv f < t , t₁ >
+   (iv f (iv f₁ g) ・ h) | iv f₂ t = iv f ( iv f₂ t )
 
-   _==_  : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂)
-   _==_ {a} {b} x y   = eval x  ≡ eval  y 
-
-   identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f
+   identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f
    identityR {a} {.a} {id a} = refl
    identityR {a} {⊤} {○ a} = refl
    identityR {_} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
    identityR {_} {_} {iv f (id a)} = refl
    identityR {_} {_} {iv f (○ a)} = refl
-   identityR {_} {_} {iv π < g , g₁ >} = identityR {_} {_} {g} 
-   identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} 
+   identityR {_} {_} {iv π < g , g₁ >} =  {!!} -- identityR {_} {_} {g} 
+   identityR {_} {_} {iv π' < g , g₁ >} = {!!} -- identityR {_} {_} {g₁} 
    identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
    identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
-   identityR {_} {_} {iv f (iv g h)} = refl
+   identityR {_} {_} {iv f (iv g h)} = {!!}
 
    open import Data.Empty 
    open import Relation.Nullary 
@@ -123,7 +126,6 @@
    std-∧ (iv f f1) g h t with eval ( iv f f1) | inspect eval (iv f f1 )
    std-∧ (iv π < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f1 g h ee
    std-∧ (iv π' < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f2 g h ee
-   std-∧ (iv π (iv f f1)) g h refl | iv π < g , h > | record { eq = ee } = ?
    std-∧ (iv x (iv f f1)) g h refl | iv π < g , h > | record { eq = ee } = {!!}  where
       lemma : ¬ (  eval (iv x (iv f f1)) ≡ iv π < g , h > )
       lemma ee = {!!}
@@ -154,29 +156,12 @@
    idem-eval (iv f (iv {_} {_} {d} g h)) | iv {a} {_} {d1 ∧ d2} f1 t | m = {!!}
    --   lemma : eval (iv f (  iv f1 t)) ≡ iv f ( iv f1 t)
 
-   assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g)
-   assoc-iv x (id a) g = refl
-   assoc-iv x (○ a) g = refl
-   assoc-iv π < f , f₁ > g = refl
-   assoc-iv π' < f , f₁ > g = refl
-   assoc-iv ε < f , f₁ > g = refl
-   assoc-iv (x *) < f , f₁ > g = refl
-   assoc-iv x (iv f g) h = begin
-            eval (iv x (iv f g ・ h)) 
-        ≡⟨ {!!} ⟩
-            eval (iv x (iv f g) ・ h)
-        ∎  where open ≡-Reasoning
-
-
-   ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g
-   ==←≡ eq = cong (λ k → eval k ) eq
-
    PL :  Category  (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂)
    PL = record {
             Obj  = Objs;
             Hom = λ a b →  Arrows  a b ;
             _o_ =  λ{a} {b} {c} x y → x ・ y ;
-            _≈_ =  λ x y → x  == y ;
+            _≈_ =  λ x y → x  ≡ y ;
             Id  =  λ{a} → id a ;
             isCategory  = record {
                     isEquivalence =  record {refl = refl ; trans = trans ; sym = sym } ;
@@ -186,14 +171,14 @@
                     associative  = λ{a b c d f g h } → associative  f g h
                }
            }  where
-               identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f
+               identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f
                identityL {_} {_} {id a} = refl
                identityL {_} {_} {○ a} = refl
                identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁})
-               identityL {_} {_} {iv f f₁} = refl
+               identityL {_} {_} {iv f f₁} = {!!}
                associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) →
-                            (f ・ (g ・ h)) == ((f ・ g) ・ h)
-               associative (id a) g h = refl
+                            (f ・ (g ・ h)) ≡ ((f ・ g) ・ h)
+               associative (id a) g h = {!!}
                associative (○ a) g h = refl
                associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h)
                associative {a} (iv π < f , f1 > ) g h = associative f g h
@@ -201,23 +186,17 @@
                associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative  < f , f1 >  g h )
                associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative  < f , f1 >  g h )
                associative {a} (iv x (id _)) g h =  begin
-                       eval (iv x (id _) ・ (g ・ h))
-                    ≡⟨⟩
-                       eval (iv x (g ・ h))
-                    ≡⟨ assoc-iv x g h ⟩
-                       eval (iv x g ・ h)
-                    ≡⟨⟩
-                       eval ((iv x (id _) ・ g) ・ h)
+                       iv x (id _) ・ (g ・ h)
+                    ≡⟨ {!!} ⟩
+                       (iv x (id _) ・ g) ・ h
                     ∎  where open ≡-Reasoning
                associative {a} (iv x (○ _)) g h =  refl
                associative {a} (iv x (iv y f)) g h = begin
-                       eval (iv x (iv y f) ・ (g ・ h))
-                    ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩
-                       eval (iv x ((iv y f) ・ (g ・ h)))
+                       iv x (iv y f) ・ (g ・ h)
                     ≡⟨ {!!}  ⟩
-                       eval ((iv x (iv y f) ・ g) ・ h)
+                       (iv x (iv y f) ・ g) ・ h
                     ∎  where open ≡-Reasoning
                   -- cong ( λ k → iv x k ) (associative f g h) 
                o-resp-≈  : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} →
-                            f == g → h == i → (h ・ f) == (i ・ g)
+                            f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g)
                o-resp-≈  f=g h=i = {!!}