Mercurial > hg > Members > kono > Proof > category
changeset 603:e548f8f2b9b4
two field again ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 05 Jun 2017 20:52:22 +0900 |
parents | b7659ad60a69 |
children | 75112154faf0 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 0 insertions(+), 40 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Jun 05 18:57:15 2017 +0900 +++ b/SetsCompleteness.agda Mon Jun 05 20:52:22 2017 +0900 @@ -148,40 +148,6 @@ open ≡-Reasoning --- --- - -- - -- equ f - -- elem -------→ a ---------→ b - -- ^ . ---------→ - -- | . g - -- |k . - -- | . e - -- c - --- -makeEqu : { c₂ : Level} → {a b c : Obj (Sets {c₂})} → (e : Hom (Sets {c₂}) c a ) → (f g : Hom (Sets {c₂}) a b) → IsEqualizer (Sets {c₂}) e f g -makeEqu {c₂} {a} {b} {c} e f g = record { - fe=ge = {!!} - ; k = λ {d} h eq → {!!} - ; ek=h = λ {d} {h} {eq} → {!!} - ; uniqueness = {!!} - } where - equ0 : IsEqualizer Sets (λ e → equ e ) f g - equ0 = SetsIsEqualizer a b f g - c→equ0 : Hom Sets c ( sequ a b f g ) - c→equ0 x = elem (e x) {!!} -- ( ≡cong ( λ y → y {!!} ) ( IsEqualizer.fe=ge equ0 ) ) - -makeProd : { c₂ : Level} → ( I : Obj (Sets {c₂}) ) - → (p : Obj (Sets {c₂})) ( ai : I → Obj (Sets {c₂}) ) ( pi : (i : I) → Hom (Sets {c₂}) p ( ai i ) ) - → IsIProduct (Sets {c₂}) I p ai pi -makeProd I p fi pi = record { - iproduct = λ {q} qi x → ? - ; pif=q = {!!} - ; ip-uniqueness = {!!} - ; ip-cong = {!!} - } - open Functor ---- @@ -247,24 +213,18 @@ → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) → proj (ipp se {i} {j} f) i ≡ proj (ipp se {i'} {j'} f' ) i lemma-equ C I s Γ {i} {j} {i'} {j'} {f} {f'} se = ≡cong ( λ p → proj p i ) ( begin - ipp se {i} {j} f - ≡⟨⟩ record { proj = λ x → proj (equ (slequ se f)) x } ≡⟨ ≡cong ( λ p → record { proj = proj p i }) ( ≡cong ( λ QIX → record { proj = QIX } ) ( extensionality Sets ( λ x → ≡cong ( λ qi → qi x ) refl ) )) ⟩ record { proj = λ x → proj (equ (slequ se f')) x } - ≡⟨⟩ - ipp se {i'} {j'} f' ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning - open import HomReasoning open NTrans - Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) Γ Cone C I s Γ = record {