Mercurial > hg > Members > kono > Proof > category
changeset 1004:e79cb6080c79
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 09 Mar 2021 14:51:17 +0900 |
parents | ece5de97fdd7 |
children | fd2d54dd2197 |
files | src/yoneda.agda |
diffstat | 1 files changed, 15 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/yoneda.agda Tue Mar 09 14:18:06 2021 +0900 +++ b/src/yoneda.agda Tue Mar 09 14:51:17 2021 +0900 @@ -346,29 +346,29 @@ open CatSurjective -CatEpiR : { c₁ c₂ ℓ c₁' c₂' ℓ' : Level} ( A : Category c₁ c₂ ℓ ) ( B : Category c₁' c₂' ℓ' ) (F : Functor A B) - → {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) - → ( f : Hom A a a' ) - → (B [ B [ g o FMap F f ] ≈ B [ h o FMap F f ] ] → B [ g ≈ h ]) - → CatSurjective A B F -CatEpiR A B F g h f eq = record { sur = λ g → {!!} ; surjective = {!!} } where - ylem22 : {a a' : Obj A} (i : Hom B (FObj F a) (FObj F a')) → B [ FMap F {!!} ≈ i ] +CatEpiR : {c : Level } (F : Functor (Sets {c}) (Sets {c})) + → {a a' : Obj Sets } {b : Obj Sets} (g h : Hom Sets (FObj F a') b) + → ( f : Hom Sets a a' ) + → (Sets [ Sets [ g o FMap F f ] ≈ Sets [ h o FMap F f ] ] → Sets [ g ≈ h ]) + → CatSurjective Sets Sets F +CatEpiR F g h f eq = record { sur = λ g → {!!} ; surjective = {!!} } where + ylem22 : {a a' : Obj Sets} (i : Hom Sets (FObj F a) (FObj F a')) → Sets [ FMap F {!!} ≈ i ] ylem22 i = begin FMap F {!!} ≈⟨ {!!} ⟩ i ∎ where - open ≈-Reasoning B + open ≈-Reasoning Sets -CatEpi : { c₁ c₂ ℓ c₁' c₂' ℓ' : Level} ( A : Category c₁ c₂ ℓ ) ( B : Category c₁' c₂' ℓ' ) (F : Functor A B) - → (s : CatSurjective A B F ) - → {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) - → (f : {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) → Hom A a a' ) - → B [ B [ g o FMap F (f {a} {a'} g h ) ] ≈ B [ h o FMap F (f g h )] ] → B [ g ≈ h ] -CatEpi A B F s g h f eq = begin +CatEpi : {c : Level} (F : Functor (Sets {c}) (Sets {c})) + → (s : CatSurjective Sets Sets F ) + → {a a' : Obj Sets } {b : Obj Sets} (g h : Hom Sets (FObj F a') b) + → (f : {a a' : Obj Sets } {b : Obj Sets} (g h : Hom Sets (FObj F a') b) → Hom Sets a a' ) + → Sets [ Sets [ g o FMap F (f {a} {a'} g h ) ] ≈ Sets [ h o FMap F (f g h )] ] → Sets [ g ≈ h ] +CatEpi F s g h f eq = begin g ≈⟨ {!!} ⟩ h ∎ where - open ≈-Reasoning B + open ≈-Reasoning Sets -- sj : B [ FMap F ( CatSurjective.sur s (FMap F (f g h))) ≈ FMap F (f g h) ] -- sj = CatSurjective.surjective s (FMap F (f g h))