Mercurial > hg > Members > kono > Proof > category
changeset 559:e8ab4fcfe033
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Apr 2017 03:13:28 +0900 |
parents | c2eb1a2570ce |
children | ba9c6dbbe6cb |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 5 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 10 02:10:37 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 10 03:13:28 2017 +0900 @@ -224,17 +224,19 @@ ; isLimit = record { limit = limit1 ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} - ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} + ; limit-uniqueness = λ {a t i } → {!!} -- limit-uniqueness {a} {t} {i} } } where a0 : Obj Sets a0 = snequ (ΓObj s Γ) (ΓMap s Γ) + setprod : {a : Obj Sets} → NTrans C Sets (K Sets C a) Γ → (x : a ) → snproj (ΓObj s Γ) (ΓMap s Γ) + setprod t x = record { snmap = λ i → TMap t i x } comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ)) limit1 a t = λ ( x : a ) → record { - snequ1 = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x } ) ( comm2 t f ) + snequ1 = λ {i} {j} f → k ( setprod t ) {!!} x } t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o limit1 a t ] ≈ TMap t i ] t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin @@ -248,26 +250,4 @@ open ≡-Reasoning limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] - limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin - limit1 a t x - ≡⟨⟩ - record { snequ1 = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x } ) ( comm2 t f ) } - ≡⟨ ≡cong ( λ se → record { snequ1 = λ {i} {j} f → se i j f }) - ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → ( extensionality Sets ( λ f' → - sncong x f' i {!!} ( ≡cong ( λ f → f x ) cif=t ) - )))))) - ⟩ - record { snequ1 = snequ1 (f x) } - ≡⟨⟩ - f x - ∎ ) where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning - sncong : (x : a) → (f' : I → I ) → ( i : Obj C ) → ( se : snequ (ΓObj s Γ) (ΓMap s Γ) ) - → snmap ( equ ( snequ1 se {i} {i} (λ x → x )) ) i ≡ TMap t i x - → elem (record { snmap = λ i → TMap t i x }) (comm2 t f') ≡ snequ1 (f x) f' - sncong x f' i se eq = {!!} - - - - + limit-uniqueness {a} {t} {f} cif=t = {!!}