Mercurial > hg > Members > kono > Proof > category
changeset 497:e8b85a05a6b2
add if U is iso to representable functor then preserve limit
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2017 11:19:54 +0900 |
parents | 5c7908202d5a |
children | c981a2f0642f |
files | freyd2.agda |
diffstat | 1 files changed, 82 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/freyd2.agda Wed Mar 15 11:19:54 2017 +0900 @@ -0,0 +1,82 @@ +open import Category -- https://github.com/konn/category-agda +open import Level +open import Category.Sets + +module freyd2 + where + +open import HomReasoning +open import cat-utility +open import Relation.Binary.Core +open import Function + +---------- +-- +-- a : Obj A +-- U : A → Sets +-- U ⋍ Hom (a,-) +-- + +-- A is Locally small +postulate ≈-≡ : { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y + +import Relation.Binary.PropositionalEquality +-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ + + +---- +-- +-- Hom ( a, - ) is Object mapping in co Yoneda Functor +-- +---- + +open NTrans +open Functor + +HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) +HomA {c₁} {c₂} {ℓ} A a = record { + FObj = λ b → Hom A a b + ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) + ; isFunctor = record { + identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; + distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; + ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) + } + } where + lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x + lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} idL + lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ + A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x + lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin + A [ A [ g o f ] o x ] + ≈↑⟨ assoc ⟩ + A [ g o A [ f o x ] ] + ≈⟨⟩ + ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) + ∎ ) + lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] + lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin + A [ f o x ] + ≈⟨ resp refl-hom eq ⟩ + A [ g o x ] + ∎ ) + + + +record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where + field + -- FObj U x : A → Set + -- FMap U f = Set → Set + -- λ b → Hom (a,b) : A → Set + -- λ f → Hom (a,-) = λ b → Hom a b + + repr→ : NTrans A (Sets {c₂}) U (HomA A b ) + repr← : NTrans A (Sets {c₂}) (HomA A b) U + representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )] + representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] + +UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) + { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) + ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U +UpreseveLimit = {!!}