Mercurial > hg > Members > kono > Proof > category
changeset 733:e8d29695741e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Nov 2017 01:13:13 +0900 |
parents | 2439a142aba2 |
children | cd23813fe11e |
files | monad→monoidal.agda |
diffstat | 1 files changed, 66 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/monad→monoidal.agda Tue Nov 28 10:47:05 2017 +0900 +++ b/monad→monoidal.agda Wed Nov 29 01:13:13 2017 +0900 @@ -14,6 +14,7 @@ open import monoidal open import Category.Sets +import Relation.Binary.PropositionalEquality Monad→HaskellMonoidalFunctor : {l : Level } (m : Monad (Sets {l} ) ) → HaskellMonoidalFunctor ( Monad.T m ) Monad→HaskellMonoidalFunctor monad = record { @@ -29,7 +30,7 @@ Monad→IsHaskellMonoidalFunctor : {l : Level } (m : Monad (Sets {l} ) ) → IsHaskellMonoidalFunctor ( Monad.T m ) ( HaskellMonoidalFunctor.unit ( Monad→HaskellMonoidalFunctor m ) ) ( HaskellMonoidalFunctor.φ ( Monad→HaskellMonoidalFunctor m ) ) -Monad→IsHaskellMonoidalFunctor monad = record { +Monad→IsHaskellMonoidalFunctor {l} monad = record { natφ = natφ ; assocφ = assocφ ; idrφ = idrφ @@ -39,10 +40,50 @@ unit = HaskellMonoidalFunctor.unit ( Monad→HaskellMonoidalFunctor monad ) φ = HaskellMonoidalFunctor.φ ( Monad→HaskellMonoidalFunctor monad ) isM = Monoidal.isMonoidal MonoidalSets + μ = NTrans.TMap (Monad.μ monad) open IsMonoidal + id : { a : Obj (Sets {l}) } → a → a + id x = x natφ : { a b c d : Obj Sets } { x : FObj F a} { y : FObj F b} { f : a → c } { g : b → d } → FMap F (map f g) (φ (x , y)) ≡ φ (FMap F f x , FMap F g y) - natφ = {!!} + natφ {a} {b} {c} {d} {x} {y} {f} {g} = begin + FMap F (map f g) (φ (x , y)) + ≡⟨⟩ + FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) (μ (Σ a (λ k → b)) (FMap F (λ f₁ → FMap F (λ g₁ → f₁ , g₁) y) x)) + ≡⟨⟩ + (FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) ・ (μ (Σ a (λ k → b)))) (FMap F (λ f₁ → FMap F (λ g₁ → f₁ , g₁) y) x) + ≡⟨ ≡-cong ( λ h → h (FMap F (λ f₁ → FMap F (λ g₁ → f₁ , g₁) y) x) ) (IsNTrans.commute (NTrans.isNTrans (Monad.μ monad) )) ⟩ + ( μ (Σ c (λ v → d)) ・ (( FMap F ( FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)))) ・ (FMap F (λ f₁ → FMap F (λ g₁ → f₁ , g₁) y)))) x + ≡⟨ sym (≡-cong ( λ h → ( μ (Σ c (λ v → d)) ・ h ) x ) (IsFunctor.distr (Functor.isFunctor F )) ) ⟩ + (μ (Σ c (λ v → d)) ・ FMap F (( FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) ・ (λ f₁ → FMap F (λ g₁ → f₁ , g₁) y) ))) x + ≡⟨⟩ + μ (Σ c (λ v → d)) (FMap F (λ x₁ → FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) (FMap F (λ g₁ → x₁ , g₁) y)) x) + ≡⟨⟩ + (μ (Σ c (λ v → d)) ・ (FMap F (λ x₁ → FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) (FMap F (λ g₁ → x₁ , g₁) y)))) x + ≡⟨ {!!} ⟩ + (μ (Σ c (λ v → d)) ・ (FMap F (λ x₁ → FMap F ((λ xy → f (proj₁ xy) , g (proj₂ xy)) ・ (λ g₁ → x₁ , g₁) ) y))) x + ≡⟨⟩ + μ (Σ c (λ v → d)) (FMap F (λ x₁ → FMap F (λ x₂ → f x₁ , g x₂) y) x) + ≡⟨⟩ + ( μ (Σ c (λ v → d)) ・ (FMap F (λ x₁ → FMap F (λ k → f x₁ , g k) y))) x + ≡⟨⟩ + μ (Σ c (λ x₁ → d)) (FMap F (λ x₁ → FMap F (λ k → f x₁ , g k) y) x) + ≡⟨⟩ + μ (Σ c (λ x₁ → d)) (FMap F ((λ f₁ → FMap F (λ k → f₁ , g k) y) ・ f) x) + ≡⟨ {!!} ⟩ + μ (Σ c (λ x₁ → d)) (((FMap F (λ f₁ → FMap F (λ k → f₁ , g k) y)) ・ (FMap F f)) x) + ≡⟨⟩ + μ (Σ c (λ x₁ → d)) (FMap F (λ f₁ → FMap F (λ k → f₁ , g k) y) (FMap F f x)) + ≡⟨⟩ + μ (Σ c (λ x₁ → d)) (FMap F (λ f₁ → FMap F (λ k → ((λ g₁ → f₁ , g₁) (g k))) y) (FMap F f x)) + ≡⟨ {!!} ⟩ + μ (Σ c (λ x₁ → d)) (FMap F (λ f₁ → FMap F (λ g₁ → f₁ , g₁) (FMap F g y)) (FMap F f x)) + ≡⟨⟩ + φ (FMap F f x , FMap F g y) + ∎ + where + open Relation.Binary.PropositionalEquality + open Relation.Binary.PropositionalEquality.≡-Reasoning assocφ : { x y z : Obj Sets } { a : FObj F x } { b : FObj F y }{ c : FObj F z } → φ (a , φ (b , c)) ≡ FMap F (Iso.≅→ (mα-iso isM)) (φ (φ (a , b) , c)) assocφ = {!!} @@ -66,7 +107,7 @@ Monad→IsApplicative : {l : Level } (m : Monad (Sets {l} ) ) → IsApplicative ( Monad.T m ) ( Applicative.pure ( Monad→Applicative m ) ) ( Applicative.<*> ( Monad→Applicative m ) ) -Monad→IsApplicative monad = record { +Monad→IsApplicative {l} monad = record { identity = identity ; composition = composition ; homomorphism = homomorphism @@ -75,11 +116,31 @@ F = Monad.T monad pure = Applicative.pure ( Monad→Applicative monad ) _<*>_ = Applicative.<*> ( Monad→Applicative monad ) + isM = Monoidal.isMonoidal ( MonoidalSets {l} ) + η = NTrans.TMap (Monad.η monad ) + μ = NTrans.TMap (Monad.μ monad) + open IsMonoidal + id : { a : Obj (Sets {l}) } → a → a + id x = x + left : {n : Level} { a b : Set n} → { x y : a → b } { h : a } → ( x ≡ y ) → x h ≡ y h + left {_} {_} {_} {_} {_} {h} eq = ≡-cong ( λ k → k h ) eq identity : { a : Obj Sets } { u : FObj F a } → pure ( id1 Sets a ) <*> u ≡ u - identity = {!!} + identity {a} {u} = {!!} composition : { a b c : Obj Sets } { u : FObj F ( b → c ) } { v : FObj F (a → b ) } { w : FObj F a } → (( pure _・_ <*> u ) <*> v ) <*> w ≡ u <*> (v <*> w) - composition = {!!} + composition {a} {b} {c} {u} {v} {w} = begin + (( pure _・_ <*> u ) <*> v ) <*> w + ≡⟨⟩ + μ c (FMap F (λ k → FMap F k w) (μ (a → c) (FMap F (λ k → FMap F k v) (μ ((a → b) → a → c) + (FMap F (λ k → FMap F k u) (η ((b → c) → (a → b) → a → c) (λ f g x → f (g x)))))))) + ≡⟨ {!!} ⟩ + μ c (FMap F (λ k → FMap F k (μ b (FMap F (λ k₁ → FMap F k₁ w) v))) u) + ≡⟨⟩ + u <*> (v <*> w) + ∎ + where + open Relation.Binary.PropositionalEquality + open Relation.Binary.PropositionalEquality.≡-Reasoning homomorphism : { a b : Obj Sets } { f : Hom Sets a b } { x : a } → pure f <*> pure x ≡ pure (f x) homomorphism = {!!} interchange : { a b : Obj Sets } { u : FObj F ( a → b ) } { x : a } → u <*> pure x ≡ pure (λ f → f x) <*> u