Mercurial > hg > Members > kono > Proof > category
changeset 147:eabd1685139a
add comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 15 Aug 2013 04:46:22 +0900 |
parents | 945f26ed12d5 |
children | 6e80e1aaa8b9 |
files | monoid-monad.agda |
diffstat | 1 files changed, 9 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/monoid-monad.agda Thu Aug 15 03:34:00 2013 +0900 +++ b/monoid-monad.agda Thu Aug 15 04:46:22 2013 +0900 @@ -94,20 +94,21 @@ Lemma-MM33 : {a : Level} {b : Level} {A : Set a} {B : A → Set b} {x : Σ A B } → (((proj₁ x) , proj₂ x ) ≡ x ) Lemma-MM33 = _≡_.refl -Lemma-MM34 : { x : Carrier Mono } -> ( (Mono ∙ ε Mono) x ≡ x ) -Lemma-MM34 {x} = ( proj₁ ( IsMonoid.identity ( isMonoid Mono )) ) x +Lemma-MM34 : ∀{ x : Carrier Mono } -> ( (Mono ∙ ε Mono) x ≡ x ) +Lemma-MM34 {x} = (( proj₁ ( IsMonoid.identity ( isMonoid Mono )) ) x ) -Lemma-MM35 : { x : Carrier Mono } -> ((Mono ∙ x) (ε Mono)) ≡ x +Lemma-MM35 : ∀{ x : Carrier Mono } -> ((Mono ∙ x) (ε Mono)) ≡ x Lemma-MM35 {x} = ( proj₂ ( IsMonoid.identity ( isMonoid Mono )) ) x -Lemma-MM36 : { x y z : Carrier Mono } -> ((Mono ∙ (Mono ∙ x) y) z) ≡ (_∙_ Mono x (_∙_ Mono y z ) ) +Lemma-MM36 : ∀{ x y z : Carrier Mono } -> ((Mono ∙ (Mono ∙ x) y) z) ≡ (_∙_ Mono x (_∙_ Mono y z ) ) Lemma-MM36 {x} {y} {z} = ( IsMonoid.assoc ( isMonoid Mono )) x y z -- We cannot prove this ... -- Lemma-MM38 : ∀{x : Carrier Mono } {f g : Carrier Mono -> Carrier Mono } -> (f x ≡ g x) -> (( λ x -> f x) ≡ (λ x -> g x) ) -- Lemma-MM38 {x} {f} {g} eq = {!!} -postulate Lemma-MM39 : ∀{x : Carrier Mono } {f g : Carrier Mono -> Carrier Mono } -> (f x ≡ g x) -> ( f ≡ g ) +-- Functional Extensionarity +postulate Lemma-MM39 : {x : Carrier Mono } {f g : Carrier Mono -> Carrier Mono } -> (f x ≡ g x) -> ( f ≡ g ) postulate Lemma-MM40 : ∀{x y z : Carrier Mono } {f g : Carrier Mono -> Carrier Mono -> Carrier Mono -> Carrier Mono } -> (f x y z ≡ g x y z ) -> ( f ≡ g ) @@ -130,14 +131,14 @@ } } where A = Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ } - Lemma-MM3 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] + Lemma-MM3 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma-MM3 {a} = let open ≈-Reasoning (Sets) renaming ( _o_ to _*_ ) in begin TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ ( λ x → ((Mono ∙ ε Mono) (proj₁ x) , proj₂ x )) - ≈⟨ cong ( \f -> ( \x -> ( ( f (proj₁ x) ) , proj₂ x ))) ( Lemma-MM9 ) ⟩ - ( λ x → (proj₁ x) , proj₂ x ) + ≈⟨ cong ( \f -> ( \(x : FObj T a ) -> ( ( f (proj₁ x) ) , proj₂ x ))) ( Lemma-MM9 ) ⟩ + ( λ (x : FObj T a) → (proj₁ x) , proj₂ x ) ≈⟨⟩ ( λ x → x ) ≈⟨⟩