Mercurial > hg > Members > kono > Proof > category
changeset 900:eaf90711a6fd
Forgetful functor from CCC to Graph done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Apr 2020 04:07:44 +0900 |
parents | e20853d2c6b0 |
children | 9652159bda4b |
files | CCCGraph.agda |
diffstat | 1 files changed, 11 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Wed Apr 29 03:01:05 2020 +0900 +++ b/CCCGraph.agda Wed Apr 29 04:07:44 2020 +0900 @@ -408,18 +408,20 @@ isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grph {c₁} {c₂}) fobj fmap IsFunctor.identity isf {a} {b} {f} e = mrefl (erefl (fobj a)) IsFunctor.distr isf {a} {b} {c} f = mrefl (erefl (fobj c)) - IsFunctor.≈-cong isf {a} {b} {f} {g} eq1 {A} {B} e with eq1 {A} {B} e | FMap (cmap f) e | FMap (cmap g) e | inspect eq1 e - ... | t | x | y | record { eq = ee } = lemma x y {!!} where - lemma : ( x : Hom (cat b) (FObj (cmap f) A) (FObj (cmap f) B) ) ( y : Hom (cat b) (FObj (cmap g) A) (FObj (cmap g) B) ) → - [ cat b ] x ~ y → [ fobj b ] x == y - lemma x y t2 = {!!} + IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e = lemma ( (extensionality Sets ( λ z → lemma4 ( + ≃-cong (cat b) (f=g (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) + )))) (f=g e) where + -- ... | t | x | y | record { eq = ee } = lemma x y {!!} where + -- lemma : ( x : Hom (cat b) (FObj (cmap f) A) (FObj (cmap f) B) ) ( y : Hom (cat b) (FObj (cmap g) A) (FObj (cmap g) B) ) → + -- [ cat b ] x ~ y → [ fobj b ] x == y + -- lemma x y t2 = {!!} -- lemma (extensionality Sets ( λ z → lemma4 ( -- ≃-cong (cat b) (eq (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) -- ))) (eq e) where - -- lemma4 : {x y : vertex (fobj b) } → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y - -- lemma4 (refl eqv) = refl - -- lemma : vmap (fmap f) ≡ vmap (fmap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ fobj b ] emap (fmap f) e == emap (fmap g) e - -- lemma refl (refl eqv) = mrefl {!!} -- (econg (fmap f ) ? ) -- ( ≈-to-≡ (cat b) eqv ) + lemma4 : {x y : vertex (fobj b) } → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y + lemma4 (refl eqv) = refl + lemma : vmap (fmap f) ≡ vmap (fmap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ fobj b ] emap (fmap f) e == emap (fmap g) e + lemma refl (refl eqv) = mrefl eqv