Mercurial > hg > Members > kono > Proof > category
changeset 1003:ece5de97fdd7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 09 Mar 2021 14:18:06 +0900 |
parents | 471f9b977920 |
children | e79cb6080c79 |
files | src/yoneda.agda |
diffstat | 1 files changed, 12 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/yoneda.agda Tue Mar 09 13:24:20 2021 +0900 +++ b/src/yoneda.agda Tue Mar 09 14:18:06 2021 +0900 @@ -322,18 +322,20 @@ f-u = f-unique -- faithful (injective ) -Yoneda-injective : {a b : Obj A } → {x y : Obj SetsAop} → (g h : Hom SetsAop y (FObj YonedaFunctor a)) (f : Hom A a b ) - → SetsAop [ SetsAop [ FMap YonedaFunctor f o g ] ≈ SetsAop [ FMap YonedaFunctor f o h ] ] - → SetsAop [ g ≈ h ] +Yoneda-injective : {a b b' : Obj A } → {x y : Obj SetsAop} → (g h : Hom A b b' ) (f : Hom A a b ) + → SetsAop [ FMap YonedaFunctor g ≈ FMap YonedaFunctor h ] + → A [ g ≈ h ] Yoneda-injective {a} {b} {x} {y} g h f yg=yh = begin - TMap g _ ≈⟨ {!!} ⟩ - TMap h _ ∎ where - open ≈-Reasoning Sets - hoge : (x₁ : Obj A) → FObj y x₁ -- Hom Sets (FObj y x₁) (FObj (FObj YonedaFunctor a) x₁) - hoge x₁ = Nat2F {x₁} {y} {!!} - ylem11 : {x : Obj A} (z : FObj y x) → A [ f o TMap g _ z ] ≡ A [ f o TMap h _ z ] - ylem11 z = (cong (λ k → k z ) yg=yh ) + g ≈↑⟨ idR ⟩ + Nat2F (FMap YonedaFunctor g) ≈⟨ ylem11 yg=yh ⟩ + Nat2F (FMap YonedaFunctor h) ≈⟨ idR ⟩ + h ∎ where + ylem11 : SetsAop [ FMap YonedaFunctor g ≈ FMap YonedaFunctor h ] → A [ Nat2F (FMap YonedaFunctor g) ≈ Nat2F (FMap YonedaFunctor h) ] + ylem11 yg=yh with yg=yh {b} + ... | eq = ≈-Reasoning.≈←≡ A ( cong (λ k → k (id1 A b)) eq ) + open ≈-Reasoning A +-- ≈←≡ (cong (λ k → Nat2F {b} {y-obj x} k) ( ≈-≡ SetsAop yg=yh)) ⟩ -- full (surjective) record CatSurjective { c₁ c₂ ℓ c₁' c₂' ℓ' : Level} ( A : Category c₁ c₂ ℓ ) ( B : Category c₁' c₂' ℓ' ) (F : Functor A B)