Mercurial > hg > Members > kono > Proof > category
changeset 126:f117cba46532
Algebra
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 09:59:38 +0900 |
parents | dec1f5db1edd |
children | 3e05417b0876 |
files | comparison-em.agda |
diffstat | 1 files changed, 15 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/comparison-em.agda Fri Aug 02 09:52:59 2013 +0900 +++ b/comparison-em.agda Fri Aug 02 09:59:38 2013 +0900 @@ -81,7 +81,21 @@ emkmap {a} {b} f = record { EMap = FMap U^K f ; homomorphism = homomorphism1 a b f } where homomorphism1 : (a b : Obj B) (f : Hom B a b) -> A [ A [ (φ (emkobj b)) o FMap T^K (FMap U^K f) ] ≈ A [ (FMap U^K f) o (φ (emkobj a)) ] ] - homomorphism1 a b f = {!!} + homomorphism1 a b f = let open ≈-Reasoning (A) in + begin + (φ (emkobj b)) o FMap T^K (FMap U^K f) + ≈⟨⟩ + FMap U^K (TMap ε^K b) o FMap U^K (FMap F^K (FMap U^K f)) + ≈⟨ sym (distr U^K) ⟩ + FMap U^K ( B [ TMap ε^K b o FMap F^K (FMap U^K f) ] ) + ≈⟨ sym (fcong U^K (nat ε^K)) ⟩ + FMap U^K ( B [ f o TMap ε^K a ] ) + ≈⟨ distr U^K ⟩ + (FMap U^K f) o FMap U^K (TMap ε^K a) + ≈⟨⟩ + (FMap U^K f) o ( φ (emkobj a)) + ∎ + K^T : Functor B Eilenberg-MooreCategory K^T = record {