Mercurial > hg > Members > kono > Proof > category
changeset 58:f321a207f711
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 24 Jul 2013 22:32:53 +0900 |
parents | c6f66c21230c |
children | a6e31588e2a6 |
files | nat.agda |
diffstat | 1 files changed, 13 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Wed Jul 24 21:19:27 2013 +0900 +++ b/nat.agda Wed Jul 24 22:32:53 2013 +0900 @@ -258,19 +258,28 @@ open Adjunction +lemma11 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} + ( U : Functor B A ) ( F : Functor A B ) -> NTrans A A ? ? -> NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) +lemma11 U F n = {!!} + +UεF : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') + ( U : Functor B A ) + ( F : Functor A B ) + ( ε : NTrans B B ( F ○ U ) identityFunctor ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) +UεF A B U F ε = lemma11 U F ( + Functor*Nat A {B} A U {( F ○ U) ○ F} {identityFunctor ○ F} ( Nat*Functor A {B} B { F ○ U} {identityFunctor} ε F) ) + -- ( \b -> FMap U ( TMap ε ( FObj F b)) ) Adj2Monad : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') { U : Functor B A } { F : Functor A B } { η : NTrans A A identityFunctor ( U ○ F ) } { ε : NTrans B B ( F ○ U ) identityFunctor } → - Adjunction A B U F η ε → Monad A (U ○ F) η {!!} + Adjunction A B U F η ε → Monad A (U ○ F) η (UεF A B U F ε) Adj2Monad A B {U} {F} {η} {ε} adj = record { isMonad = record { assoc = {!!}; unity1 = {!!}; unity2 = {!!} } - } where - UεF : {!!} - UεF = Functor*Nat B A U ( Nat*Functor ? {?} ? ε F) + }