Mercurial > hg > Members > kono > Proof > category
changeset 568:f3fb9061a8ca
last one problem in SetCompleteness
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Apr 2017 12:01:03 +0900 |
parents | 9e727ce08b2c |
children | 25c18786fbdc |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 24 11:48:35 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 24 12:01:03 2017 +0900 @@ -248,7 +248,17 @@ uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → (f' : I → I ) → (x : a ) → equ (elem (record { snmap = λ i₁ → TMap t i₁ x }) (limit2 a t f' x)) ≡ equ (snequ1 (f x) f') - uniquness2 cif=t f' x = refl + uniquness2 {a} {t} {f} cif=t f' x = begin + record { snmap = λ i₁ → TMap t i₁ x } + ≡⟨ ≡cong ( λ g → record { snmap = λ i → g i } ) ( extensionality Sets ( λ i → sym ( ≡cong ( λ e → e x ) cif=t ) ) ) ⟩ + record { snmap = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x } + ≡⟨⟩ + record { snmap = λ i → snmap (equ (snequ1 (f x) {i} {i} (λ x → x )) ) i } + ≡⟨ {!!} ⟩ + record { snmap = λ i₁ → snmap (equ (snequ1 (f x) f')) i₁ } + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning uniquness1 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] uniquness1 {a} {t} {f} cif=t = extensionality Sets ( λ x → begin