Mercurial > hg > Members > kono > Proof > category
changeset 188:f4c9d7cbcbb9
Yoneda Functor Constructed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 29 Aug 2013 10:14:59 +0900 |
parents | 47d6a9bc3933 |
children | c6ce3115cb1b |
files | yoneda.agda |
diffstat | 1 files changed, 26 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Thu Aug 29 00:54:15 2013 +0900 +++ b/yoneda.agda Thu Aug 29 10:14:59 2013 +0900 @@ -159,6 +159,8 @@ ; isCategory = isSetsAop } +postulate extensionality1 : Relation.Binary.PropositionalEquality.Extensionality c₁ c₂ + YonedaFunctor : Functor A SetsAop YonedaFunctor = record { FObj = λ a → CF {a} @@ -170,11 +172,32 @@ } } where ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → SetsAop [ y-nat f ≈ y-nat g ] - ≈-cong {a} {b} {f} {g} eq = {!!} -- (λ x g₁ → A [ f o g₁ ] ) ≡ (λ x g₁ → A [ g o g₁ ] ) + ≈-cong {a} {b} {f} {g} eq = let open ≈-Reasoning (A) in -- (λ x g₁ → A [ f o g₁ ] ) ≡ (λ x g₁ → A [ g o g₁ ] ) + extensionality1 ( λ x → extensionality ( + λ h → ≈-≡ ( begin + A [ f o h ] + ≈⟨ resp refl-hom eq ⟩ + A [ g o h ] + ∎ + ) ) ) identity : {a : Obj A} → SetsAop [ y-nat (id1 A a) ≈ id1 SetsAop (CF {a} ) ] - identity {a} = {!!} -- (λ x g → A [ id1 A a o g ] ) ≡ (λ a₁ x → x) + identity {a} = let open ≈-Reasoning (A) in -- (λ x g → A [ id1 A a o g ] ) ≡ (λ a₁ x → x) + extensionality1 ( λ x → extensionality ( + λ g → ≈-≡ ( begin + A [ id1 A a o g ] + ≈⟨ idL ⟩ + g + ∎ + ) ) ) distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-nat (A [ g o f ]) ≈ SetsAop [ y-nat g o y-nat f ] ] - distr1 {a} {b} {c} {f} {g} = {!!} -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]) ≡ (λ x x₁ → A [ g .o A [ f o x₁ ] ] ) + distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] ) + extensionality1 ( λ x → extensionality ( + λ h → ≈-≡ ( begin + A [ A [ g o f ] o h ] + ≈↑⟨ assoc ⟩ + A [ g o A [ f o h ] ] + ∎ + ) ) )