changeset 851:f4f5ce90d3af

plan B
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Apr 2020 13:40:35 +0900
parents 40c6e806bda0
children 425eda25ff8c
files CCCGraph1.agda
diffstat 1 files changed, 37 insertions(+), 21 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Sat Apr 04 10:06:20 2020 +0900
+++ b/CCCGraph1.agda	Sat Apr 04 13:40:35 2020 +0900
@@ -44,10 +44,17 @@
    iv x y ・ id a = iv x y
    iv f (iv f₁ g) ・ h = iv f (  (iv f₁ g) ・ h )
    ○ a ・ g = ○ _
-   f ・ id b = f
+
+   eval :  {a b : Objs } (f : Arrows a b ) → Arrows a b
+   eval (id a) = id a
+   eval (○ a) = ○ a
+   eval < f , f₁ > = < eval f , eval f₁ >
+   eval (iv π < f , g > ) =  eval f
+   eval (iv π' < f , g > ) = eval g
+   eval (iv f g) = iv f (eval g)
 
    _==_  : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂)
-   _==_ {a} {b} x y   = (x  ・ id _ ) ≡ ( y ・ id _ )
+   _==_ {a} {b} x y   = eval x  ≡ eval  y 
 
    identityR≡ : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f
    identityR≡ {a} {.a} {id a} = refl
@@ -55,19 +62,27 @@
    identityR≡ {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR≡  identityR≡  
    identityR≡ {a} {b} {iv x (id a)} = refl
    identityR≡ {a} {b} {iv x (○ a)} = refl
-   identityR≡ {a} {_} {iv π < f , g >} = {!!}
+   identityR≡ {a} {_} {iv π < f , g >} = begin
+            iv π < f , g > ・ id a
+         ≡⟨⟩
+            f ・ id a 
+         ≡⟨ identityR≡ ⟩
+            f
+         ≡⟨ {!!} ⟩
+            iv π < f , g >
+         ∎  where open ≡-Reasoning
    identityR≡ {a} {b} {iv π' < f , g >} = {!!}
-   identityR≡ {a} {b} {iv ε < f , g >} = {!!}
-   identityR≡ {a} {.(_ <= _)} {iv (x *) < y , y₁ >} = {!!}
+   identityR≡ {a} {b} {iv ε < f , g >} = cong₂ ( λ j k → iv  ε < j , k > ) identityR≡  identityR≡
+   identityR≡ {a} {_} {iv (x *) < f , g >} = cong₂ ( λ j k → iv (x *) < j , k > ) identityR≡  identityR≡
    identityR≡ {a} {b} {iv x (iv f y)} = refl
    identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f
-   identityR {a} {b} {f} = cong ( λ k → k ・ id a ) ( identityR≡ {_} {_} {f} )
+   identityR {a} {b} {f} = {!!} -- cong ( λ k → k ・ id a ) ( identityR≡ {_} {_} {f} )
 
    ≡←== : {A B : Objs} {f g : Arrows A B} → f == g → f ≡ g
-   ≡←== eq = subst₂ (λ j k → j ≡ k ) identityR≡ identityR≡ eq
+   ≡←== eq = subst₂ (λ j k → j ≡ k ) identityR≡ identityR≡ {!!}
 
    ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g
-   ==←≡ eq = cong (λ k → k ・ id _) eq
+   ==←≡ eq = {!!} -- cong (λ k → k ・ id _) eq
 
    assoc-iv : {a b c d : Objs} (x : Arrow c d ) (f : Arrows b c ) ( g : Arrows a b ) → iv x f ・ g ≡ iv x ( f ・ g )
    assoc-iv x f (id _) = begin
@@ -136,19 +151,20 @@
                associative (id a) g h = refl
                associative (○ a) g h = refl
                associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h)
-               associative {a} (iv x f) g h = begin
-                      (iv x f ・ (g ・ h)) ・ id a
-                    ≡⟨ cong ( λ k → k ・ id a) (assoc-iv x f ( g ・ h )) ⟩
-                      iv x (f ・ (g ・ h)) ・ id a
-                    ≡⟨ cong ( λ k → iv x k ・ id a) (≡←== (associative f g h ) ) ⟩
-                       {!!}
-                    ≡⟨ {!!} ⟩
-                      iv x ((f ・ g ) ・ h) ・ id a
-                    ≡⟨ sym (cong ( λ k → k ・ id a) (assoc-iv x (f ・ g ) h))  ⟩
-                      ( iv x (f ・ g ) ・ h) ・ id a
-                    ≡⟨ sym (cong ( λ k → (k ・  h ) ・ id a) (assoc-iv x f g)) ⟩
-                      ((iv x f ・ g) ・ h) ・ id a
-                    ∎  where open ≡-Reasoning
+               associative {a} (iv x f) g h = {!!}
+               -- begin
+               --       (iv x f ・ (g ・ h)) ・ id a
+               --     ≡⟨ cong ( λ k → k ・ id a) (assoc-iv x f ( g ・ h )) ⟩
+               --       iv x (f ・ (g ・ h)) ・ id a
+               --     ≡⟨ cong ( λ k → iv x k ・ id a) (≡←== (associative f g h ) ) ⟩
+               --        {!!}
+               --     ≡⟨ {!!} ⟩
+               --       iv x ((f ・ g ) ・ h) ・ id a
+               --     ≡⟨ sym (cong ( λ k → k ・ id a) (assoc-iv x (f ・ g ) h))  ⟩
+               --       ( iv x (f ・ g ) ・ h) ・ id a
+               --     ≡⟨ sym (cong ( λ k → (k ・  h ) ・ id a) (assoc-iv x f g)) ⟩
+               --       ((iv x f ・ g) ・ h) ・ id a
+               --     ∎  where open ≡-Reasoning
                     --  {!!} ( cong ( λ k → iv x k ) ( ≡←== (associative f g h ) ) ) 
                o-resp-≈  : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} →
                             f == g → h == i → (h ・ f) == (i ・ g)