Mercurial > hg > Members > kono > Proof > category
changeset 823:f57c9603d989
add ≈-to-≡ assumption
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 May 2019 21:35:03 +0900 |
parents | 4c0580d9dda4 |
children | 878d8643214f |
files | CCCGraph.agda |
diffstat | 1 files changed, 8 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Wed May 01 21:16:58 2019 +0900 +++ b/CCCGraph.agda Wed May 01 21:35:03 2019 +0900 @@ -350,10 +350,11 @@ ∎ ) -UX : {c₁ c₂ ℓ : Level} → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) -FObj (UX {c₁} {c₂} {ℓ}) a = fobj a -FMap UX f = fmap f -isFunctor (UX {c₁} {c₂} {ℓ}) = isf where +UX : {c₁ c₂ ℓ : Level} → ( ≈-to-≡ : (A : Category c₁ c₂ ℓ ) → {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g ) + → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) +FObj (UX {c₁} {c₂} {ℓ} ≈-to-≡ ) a = fobj a +FMap (UX ≈-to-≡) f = fmap f +isFunctor (UX {c₁} {c₂} {ℓ} ≈-to-≡) = isf where open import HomReasoning lemma0 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a b : Obj B} → [_]_~_ B (id1 B a) (id1 B b) → a ≡ b lemma0 {A} {B} {f} {g} (refl eqv) = refl @@ -365,12 +366,12 @@ → (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) lemma1 {a} {b} {f} {g} eq = extensionality Sets ( λ z → lemma01 {cat a} {cat b} {cmap f} {cmap g} eq ) lemma20 : {A B : Category c₁ c₂ ℓ } {a b : Obj A} → ( e : Hom A a b ) → ( g : Functor A B ) → ( f : Hom A a b → Hom B (FObj g a) (FObj g b) ) - → B [ f e ≈ FMap g e ] → f e ≅ FMap g e - lemma20 e g f eq = {!!} + → B [ f e ≈ FMap g e ] → f e ≡ FMap g e + lemma20 {_} {B} e g f eq = ≈-to-≡ B eq lemma2 : {A B : Obj (Cart {c₁} {c₂} {ℓ}) } { f g : Hom (Cart {c₁} {c₂} {ℓ}) A B} → (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) → {a b : vertex (fobj A)} {e : edge (fobj A) a b} → emap (fmap f) e ≅ emap (fmap g) e lemma2 {A} {B} {f} {g} eq refl {a} {b} {e} with ( eq e ) - ... | refl {h} eqv = lemma20 e (cmap g) (FMap (cmap f)) eqv + ... | refl {h} eqv = Relation.Binary.HeterogeneousEquality.≡-to-≅ ( lemma20 e (cmap g) (FMap (cmap f)) eqv ) isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) fobj fmap IsFunctor.identity isf = mrefl refl refl IsFunctor.distr isf = mrefl refl refl