Mercurial > hg > Members > kono > Proof > category
changeset 352:f589e71875ea
bad approach
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 24 Dec 2014 22:16:20 +0900 |
parents | 1306fbc8290b |
children | d255a929815f |
files | limit-to.agda |
diffstat | 1 files changed, 11 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Wed Dec 24 12:50:52 2014 +0900 +++ b/limit-to.agda Wed Dec 24 22:16:20 2014 +0900 @@ -36,37 +36,30 @@ unique-map : ∀{two : Two } → map← ( map two ) ≡ two unique-map1 : ∀{f : Hom I (obj t0) (obj t1) } → map ( map← f ) ≡ f - open Limit open TwoCat +record two-Γ {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) + (a b : Obj A) (f g : Hom A a b ) + (two : Two) (twocat : TwoCat I two ) (Γ : Functor I A) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + field + a0 : FObj Γ (obj twocat t0 ) ≡ a + b0 : FObj Γ (obj twocat t1 ) ≡ b + f0 : A [ FMap Γ (map twocat t0 ) ≈ f ] + g0 : A [ FMap Γ (map twocat t0 ) ≈ g ] + lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) (two : Two ) (twocat : TwoCat I two) + (Γ : Functor I A) (lim : ( Γ : Functor I A ) → { a0 : Obj A } { u : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 u ) -- completeness → {a b c : Obj A} (f g : Hom A a b) → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g -lim-to-equ {c₁} A I two twocat lim {a} {b} {c} f g e fe=ge = record { +lim-to-equ {c₁} A I two twocat Γ lim {a} {b} {c} f g e fe=ge = record { fe=ge = fe=ge ; k = λ {d} h fh=gh → k {d} h fh=gh ; ek=h = λ {d} {h} {fh=gh} → {!!} ; uniqueness = λ {d} {h} {fh=gh} {k'} → {!!} } where - Γobj : Two {c₁} → Obj A - Γobj t0 = a - Γobj t1 = b - Γmap : Two {c₁} → Hom A a b - Γmap t0 = f - Γmap t1 = g - Γ : Functor I A - Γ = record { - FObj = λ x → Γobj (obj← twocat x) ; - FMap = λ f → {!!} ; - isFunctor = record { - ≈-cong = {!!} ; - identity = {!!} ; - distr = {!!} - } - } nat : (d : Obj A) → NTrans I A (K A I d) Γ nat d = record { TMap = λ x → {!!} ;