Mercurial > hg > Members > kono > Proof > category
changeset 685:f5f582ae20bb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Nov 2017 08:40:11 +0900 |
parents | 5d9d7c2f2718 |
children | 14ad6ec8a662 |
files | pullback.agda |
diffstat | 1 files changed, 13 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Wed Nov 08 00:09:21 2017 +0900 +++ b/pullback.agda Wed Nov 08 08:40:11 2017 +0900 @@ -318,8 +318,8 @@ -- -- limit from equalizer and product -- --- --- Γ j = Γ k +-- Γu +-- Γ j ----→ Γ k -- ↑ ^ ↑ ↑ -- | | | |proj k -- | |mu u |mu u @@ -356,9 +356,9 @@ → Limit A I Γ limit-from prod eqa = record { a0 = d ; - t0 = limit-ε ; + t0 = cone-ε ; isLimit = record { - limit = λ a t → limit1 a t ; + limit = λ a t → cone1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } @@ -385,8 +385,8 @@ -- projection of the product of Hom I mu : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) mu u = pi (prod Fcod ) (Homprod u) - limit-ε : NTrans I A (K A I (equalizer-c equ-ε ) ) Γ - limit-ε = record { + cone-ε : NTrans I A (K A I (equalizer-c equ-ε ) ) Γ + cone-ε = record { TMap = λ i → tmap i ; isNTrans = record { commute = commute1 } } where @@ -452,12 +452,12 @@ ≈⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ f o h t ∎ - limit1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a d - limit1 a t = k equ (h t) ( fh=gh a t ) + cone1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a d + cone1 a t = k equ (h t) ( fh=gh a t ) t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {i : Obj I} → - A [ A [ TMap limit-ε i o limit1 a t ] ≈ TMap t i ] + A [ A [ TMap cone-ε i o cone1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin - TMap limit-ε i o limit1 a t + TMap cone-ε i o cone1 a t ≈⟨⟩ ( ( proj i ) o e ) o k equ (h t) (fh=gh a t) ≈↑⟨ assoc ⟩ @@ -468,10 +468,10 @@ TMap t i ∎ limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {f : Hom A a d} - → ({i : Obj I} → A [ A [ TMap limit-ε i o f ] ≈ TMap t i ]) → - A [ limit1 a t ≈ f ] + → ({i : Obj I} → A [ A [ TMap cone-ε i o f ] ≈ TMap t i ]) → + A [ cone1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin - limit1 a t + cone1 a t ≈⟨⟩ k equ (h t) (fh=gh a t) ≈⟨ IsEqualizer.uniqueness equ ( begin