Mercurial > hg > Members > kono > Proof > category
changeset 247:f6e8d6d04af8
equalizer done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 12:47:53 +0900 |
parents | 80d9ef47566b |
children | efa2fd0e91ee |
files | equalizer.agda |
diffstat | 1 files changed, 14 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 09 12:35:56 2013 +0900 +++ b/equalizer.agda Mon Sep 09 12:47:53 2013 +0900 @@ -236,7 +236,7 @@ (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d δ = λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f); -- Hom A a c cong-α = λ {a b c e f g g'} eq → cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq ; - cong-γ = λ {a} {_} {c} {d} {f} {g} {h} {h'} eq → cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} eq ; + cong-γ = λ {a} {_} {c} {d} {f} {g} {h} {h'} eq → cong-γ1 {a} {c} {d} {f} {g} {h} {h'} eq ; cong-δ = λ {a b c e f f'} f=f' → cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' ; b1 = fe=ge (eqa {a} {b} {c} f g {e}) ; b2 = lemma-b2 ; @@ -279,10 +279,10 @@ cong-α1 : {a b c : Obj A } → { e : Hom A c a } → {f g g' : Hom A a b } → A [ g ≈ g' ] → A [ equalizer (eqa {a} {b} {c} f g {e} )≈ equalizer (eqa {a} {b} {c} f g' {e} ) ] cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq = let open ≈-Reasoning (A) in refl-hom - cong-γ1 : {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } → A [ h ≈ h' ] → { e : Hom A c a} → + cong-γ1 : {a c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } → A [ h ≈ h' ] → { e : Hom A c a} → A [ k (eqa f g {e} ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ≈ k (eqa f g {e} ) {d} ( A [ h' o (equalizer ( eqa (A [ f o h' ] ) (A [ g o h' ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' ) ] - cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} h=h' {e} = let open ≈-Reasoning (A) in begin + cong-γ1 {a} {c} {d} {f} {g} {h} {h'} h=h' {e} = let open ≈-Reasoning (A) in begin k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ≈⟨ uniqueness (eqa f g) ( begin e o ( k (eqa f f {e}) (id1 A a) (f1=f1 f) o h) @@ -317,7 +317,17 @@ ∎ cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] → A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f) ≈ k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') ] - cong-δ1 = {!!} + cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' = let open ≈-Reasoning (A) in + begin + k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f) + ≈⟨ uniqueness (eqa f f) ( begin + e o k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') + ≈⟨ ek=h (eqa {a} {b} {c} f' f' {e} ) ⟩ + id1 A a + ∎ )⟩ + k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') + ∎ + lemma-b2 : {d : Obj A} {h : Hom A d a} → A [ A [ equalizer (eqa f g) o k (eqa f g) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ] ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ]