Mercurial > hg > Members > kono > Proof > category
changeset 635:f7cc0ec00e05
introduce U preserving
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2017 21:52:14 +0900 |
parents | 5b0286e3aa32 |
children | 3e663c7f88c4 |
files | freyd2.agda |
diffstat | 1 files changed, 16 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Wed Jun 28 17:17:17 2017 +0900 +++ b/freyd2.agda Fri Jun 30 21:52:14 2017 +0900 @@ -102,11 +102,11 @@ -- Yoneda A b = λ a → Hom A a b : Functor A Sets -- : Functor Sets A -UpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) +YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) (b : Obj A ) (Γ : Functor I A) (limita : Limit A I Γ) → IsLimit Sets I (Yoneda A b ○ Γ) (FObj (Yoneda A b) (a0 limita)) (LimitNat A I Sets Γ (a0 limita) (t0 limita) (Yoneda A b)) -UpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { +YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { limit = λ a t → ψ a t ; t0f=t = λ {a t i} → t0f=t0 a t i ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t @@ -168,10 +168,10 @@ ∎ )) -UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) +YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) (b : Obj A ) → LimitPreserve A I Sets (Yoneda A b) -UpreserveLimit A I b = record { - preserve = λ Γ lim → UpreserveLimit0 A I b Γ lim +YonedaFpreserveLimit A I b = record { + preserve = λ Γ lim → YonedaFpreserveLimit0 A I b Γ lim } @@ -247,6 +247,17 @@ ≡-cong = Relation.Binary.PropositionalEquality.cong +UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A (Sets {c₂}) ) + (SFS : SmallFullSubcategory ( K (Sets {c₂}) A * ↓ U) ) + (PI : PreInitial ( K (Sets) A * ↓ U) (SFSF SFS)) + → LimitPreserve A I Sets U +UpreserveLimit A I comp U SFS PI = record { + preserve = λ Γ lim → {!!} -- UpreserveLimit0 A I b Γ lim + } + +-- if K{*}↓U has initial Obj, U is representable + UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( comp : Complete A A ) (U : Functor A (Sets {c₂}) ) (SFS : SmallFullSubcategory ( K (Sets {c₂}) A * ↓ U) )