Mercurial > hg > Members > kono > Proof > category
changeset 946:f8e6e9128f3d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 18 May 2020 18:41:55 +0900 |
parents | 94ece478b583 |
children | 095fd0829ccf |
files | CCCGraph.agda |
diffstat | 1 files changed, 24 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Sun May 17 23:07:18 2020 +0900 +++ b/CCCGraph.agda Mon May 18 18:41:55 2020 +0900 @@ -428,6 +428,25 @@ open ccc-from-graph g + FCat' : Obj (Cart {suc c₁} {suc c₁ ⊔ c₂} {c₁ ⊔ c₂}) + FCat' = record { cat = record { + Obj = Obj PL + ; Hom = λ a b → {f : Hom PL a b } → Hom B (FObj CS a) (FObj CS b) + ; _o_ = {!!} + ; _≈_ = {!!} + ; Id = λ {a} → id1 B (FObj CS a) + ; isCategory = record { + isEquivalence = {!!}; + identityL = λ {a b f} → {!!}; + identityR = λ {a b f} → {!!}; + o-resp-≈ = λ {a b c f g h i} → {!!}; + associative = λ{a b c d f g h } → {!!} } + } ; + ≡←≈ = λ eq → {!!} ; + ccc = {!!} + } where + B = Sets {c₁ ⊔ c₂} + FCat : Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) FCat = record { cat = record { Obj = Obj PL @@ -474,7 +493,7 @@ -- Sets ((z : vertx g) → C z x) ----> ((z : vertx g) → C z y) = h : Hom Sets (fobj (atom x)) (fobj (atom y)) -- F : Obj (Grph {c₁} {c₂}) → Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) - F g = FCat where open fcat g -- record { cat = Sets {c₁ ⊔ c₂} ; ccc = sets ; ≡←≈ = λ eq → eq } + F g = FCat' where open fcat g η : (a : Obj (Grph {c₁} {c₂}) ) → Hom Grph a (FObj UX (F a)) η a = record { vmap = λ y → vm y ; emap = λ f → em f } where fo : Graph {suc c₁ } {c₁ ⊔ c₂} @@ -492,13 +511,11 @@ cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - c-map {g} {c} {atom a} {atom x} f y = {!!} - c-map {g} {c} {⊤} {atom x} f y = ? - c-map {g} {c} {a ∧ b} {atom x} f y = {!!} - c-map {g} {c} {b <= a} {atom x} f y = {!!} + c-map {g} {c} {a} {atom b} f y = {!!} + -- with emap (m12 (uobj {c₁} {c₂} c)) ( emap f {!!} ) c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) - c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f {!!}) (c-map f {!!}) - c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f {!!}) + c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k))) + c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ k → x (proj₁ k) (proj₂ k))) solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ;