Mercurial > hg > Members > kono > Proof > category
changeset 612:f924056bf08a
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Jun 2017 10:15:24 +0900 |
parents | b1b5c6b4c570 |
children | afddfebea797 |
files | freyd2.agda |
diffstat | 1 files changed, 18 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Mon Jun 12 23:25:39 2017 +0900 +++ b/freyd2.agda Tue Jun 13 10:15:24 2017 +0900 @@ -114,10 +114,10 @@ -- : Functor Sets A UpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) - (comp : Complete A A) (b : Obj A ) + (b : Obj A ) (Γ : Functor I A) (limita : Limit A I Γ) → IsLimit Sets I (HomA A b ○ Γ) (FObj (HomA A b) (a0 limita)) (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) -UpreserveLimit0 {c₁} {c₂} {ℓ} A I comp b Γ lim = record { +UpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { limit = λ a t → ψ a t ; t0f=t = λ {a t i} → t0f=t0 a t i ; limit-uniqueness = λ {b} {t} {f} t0f=t → {!!} @@ -150,13 +150,25 @@ ψ X t x = FMap (HomA A b) (limit (isLimit lim) b (ta X x t )) (id1 A b ) t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K Sets I a) (HomA A b ○ Γ)) (i : Obj I) → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 lim) (t0 lim) (HomA A b)) i o ψ a t ] ≈ TMap t i ] - t0f=t0 = {!!} + t0f=t0 a t i = let open ≈-Reasoning A in extensionality A ( λ x → ≈-≡ A ( begin + ( Sets [ TMap (LimitNat A I Sets Γ (a0 lim) (t0 lim) (HomA A b)) i o ψ a t ] ) x + ≈⟨⟩ + (FMap (HomA A b) ( TMap (t0 lim) i)) (FMap (HomA A b) (limit (isLimit lim) b (ta a x t )) (id1 A b )) + ≈⟨ {!!} ⟩ + FMap (HomA A b) (A [ TMap (t0 lim) i o limit (isLimit lim) b (ta a x t ) ]) (id1 A b ) + ≈⟨ ? ⟩ + FMap (HomA A b) (TMap t i x) (id1 A b ) + ≈⟨ {!!} ⟩ + {!!} o TMap t i x + ≈⟨ idL ⟩ + TMap t i x + ∎ )) UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) - (comp : Complete A A) (b : Obj A ) → LimitPreserve A I Sets (HomA A b) -UpreserveLimit A I comp b = record { - preserve = λ Γ lim → UpreserveLimit0 A I comp b Γ lim + (b : Obj A ) → LimitPreserve A I Sets (HomA A b) +UpreserveLimit A I b = record { + preserve = λ Γ lim → UpreserveLimit0 A I b Γ lim } -- K{*}↓U has preinitial full subcategory then U is representable