Mercurial > hg > Members > kono > Proof > category
changeset 70:fb3c48b375b3
Kleisli Category ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Jul 2013 06:39:24 +0900 |
parents | 84a150c980ce |
children | 709c1bde54dc |
files | nat.agda |
diffstat | 1 files changed, 14 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Thu Jul 25 14:46:02 2013 +0900 +++ b/nat.agda Fri Jul 26 06:39:24 2013 +0900 @@ -203,27 +203,36 @@ join k ( join k h g) f ∎ where open ≈-Reasoning (A) -KHom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → ( T : Functor A A ) {a b : Obj A} → {!!} -> {!!} -> Set c₂ -KHom = {!!} +KHom1 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → ( T : Functor A A ) (a : Obj A) → (b : Obj A) -> Set (c₂ ⊔ c₁) +KHom1 = {!!} + +record KHom {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) (a : Obj A) (b : Obj A) + : Set (suc (c₂ ⊔ c₁)) where + field + KMap : Hom A a ( FObj T b ) Kleisli-join : {!!} Kleisli-join = {!!} -Kleisli-id : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) {a : Obj A} → Hom A a (FObj T a) -Kleisli-id A T = {!!} +Kleisli-id : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) (η : NTrans A A identityFunctor T) {a : Obj A} → KHom A T a a +Kleisli-id A T η {a = a} = record { KMap = TMap η a } Lemma10 : {!!} Lemma10 = {!!} open import Relation.Binary.Core +_⋍_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) + { a : Obj A } { b : Obj A } (f g : KHom A T a b ) -> Set ? +_⋍_ = ? + isKleisliCategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } ( m : Monad A T η μ ) { k : Kleisli A T η μ m} → - IsCategory ( Obj A ) ( KHom A T ) ( Category._≈_ A ) ( Kleisli-join ) (Kleisli-id A T) + IsCategory ( Obj A ) ( KHom A T ) ( _⋍_ A T ) ( Kleisli-join ) (Kleisli-id A T η) isKleisliCategory A {T} {η} m = record { isEquivalence = IsCategory.isEquivalence ( Category.isCategory A ) ; identityL = {!!} ; identityR = {!!}