Mercurial > hg > Members > kono > Proof > category
changeset 855:fc84b00ffd94
idem-<l> and <r>
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Apr 2020 08:59:28 +0900 |
parents | 75d0e039d5bc |
children | a6f31c39b5f2 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 21 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Sat Apr 04 20:08:49 2020 +0900 +++ b/CCCGraph1.agda Sun Apr 05 08:59:28 2020 +0900 @@ -47,8 +47,15 @@ eval (iv f (iv g h)) | ○ a = iv f (○ a) eval (iv π (iv g h)) | < t , t₁ > = t eval (iv π' (iv g h)) | < t , t₁ > = t₁ - eval (iv f (iv g h)) | < t , t₁ > = iv f < t , t₁ > - eval (iv f (iv g h)) | iv f₁ t = iv f ( iv f₁ t ) + eval (iv ε (iv g h)) | < t , t₁ > = iv ε < t , t₁ > + eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > + eval (iv f (iv g h)) | iv f1 t = iv f ( iv f1 t ) + + idem-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 + idem-<l> refl = refl + + idem-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 + idem-<r> refl = refl idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f idem-eval (id a) = refl @@ -60,26 +67,28 @@ idem-eval (iv π' < g , g₁ >) = idem-eval g₁ idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) + idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) idem-eval (iv f (iv g h)) | id a | m = refl idem-eval (iv f (iv g h)) | ○ a | m = refl - idem-eval (iv π (iv g h)) | < t , t₁ > | m = {!!} - idem-eval (iv π' (iv g h)) | < t , t₁ > | m = {!!} + idem-eval (iv π (iv g h)) | < t , t₁ > | m = idem-<l> m + idem-eval (iv π' (iv g h)) | < t , t₁ > | m = idem-<r> m idem-eval (iv ε (iv g h)) | < t , t₁ > | m = cong ( λ k → iv ε k ) m idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m = cong ( λ k → iv (f *) k ) m - idem-eval (iv f (iv g h)) | iv f₁ t | m = {!!} + idem-eval (iv f (iv g h)) | iv f1 t | m = lemma where + lemma : eval (iv f (iv f1 t)) ≡ iv f (iv f1 t) + lemma = ? _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c - id a ・ g = eval g + id a ・ g = g ○ a ・ g = ○ _ < f , g > ・ h = < f ・ h , g ・ h > - iv f (id _) ・ h = iv f (eval h) + iv f (id _) ・ h = iv f h iv π < g , g₁ > ・ h = g ・ h iv π' < g , g₁ > ・ h = g₁ ・ h iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > iv f ( (○ a)) ・ g = iv f ( ○ _ ) - iv x y ・ id a = iv x (eval y) + iv x y ・ id a = iv x y iv f (iv f₁ g) ・ h = iv f ( iv f₁ g ・ h ) _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) @@ -100,7 +109,8 @@ identityR {a} {b} {iv {a} {b} {.(b ∧ _)} π (iv g h)} | record {eq = refl } | < t , t₁ > = {!!} identityR {a} {b} {iv {a} {b} {.(b ∧ _)} π (iv g h)} | record {eq = refl } | iv f t = {!!} identityR {a} {b} {iv {c} {d} {e} π' (iv g h)} = {!!} - identityR {a} {b} {iv {c} {d} {e} f (iv g h)} = {!!} + identityR {a} {b} {iv {c} {d} {e} f (iv g h)} with identityR {_} {_} {iv g h} + ... | t = {!!} ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g ==←≡ eq = cong (λ k → eval k ) eq @@ -123,7 +133,7 @@ identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f identityL {_} {_} {id a} = refl identityL {_} {_} {○ a} = refl - identityL {a} {b} {< f , f₁ >} = {!!} + identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁}) identityL {_} {_} {iv f f₁} = {!!} associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) == ((f ・ g) ・ h)