Mercurial > hg > Members > kono > Proof > galois
comparison Putil.agda @ 161:047efc82be47
sized fresh list
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Nov 2020 20:43:01 +0900 |
parents | d880595eae30 |
children |
comparison
equal
deleted
inserted
replaced
160:254f3acb2091 | 161:047efc82be47 |
---|---|
195 p15 with <-cmp (toℕ y) (suc m) -- eq : suc y ≡ suc (suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) , a : suc x < suc m | 195 p15 with <-cmp (toℕ y) (suc m) -- eq : suc y ≡ suc (suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) , a : suc x < suc m |
196 ... | tri< a₁ ¬b ¬c = p11 where | 196 ... | tri< a₁ ¬b ¬c = p11 where |
197 p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x | 197 p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x |
198 p11 = begin | 198 p11 = begin |
199 fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) | 199 fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) |
200 ≡⟨ fromℕ<-irrelevant _ _ p12 _ (s≤s (fin<n {suc n})) ⟩ | 200 -- ≡⟨ fromℕ<-irrelevant _ _ p12 _ (s≤s (fin<n {suc n})) ⟩ |
201 ≡⟨ {!!} ⟩ | |
201 suc (fromℕ< (fin<n {suc n} {x} )) | 202 suc (fromℕ< (fin<n {suc n} {x} )) |
202 ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ | 203 ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ |
203 suc x | 204 suc x |
204 ∎ | 205 ∎ |
205 ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → k < suc m) (sym p12) a )) -- suc x < suc m -> y = suc x → toℕ y < suc m | 206 ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → k < suc m) (sym p12) a )) -- suc x < suc m -> y = suc x → toℕ y < suc m |
276 p005 zero m eq (s≤s m≤n) meq = p004 where | 277 p005 zero m eq (s≤s m≤n) meq = p004 where |
277 p004 : perm ⟨$⟩ˡ (fromℕ< (s≤s (s≤s m≤n))) ≡ zero | 278 p004 : perm ⟨$⟩ˡ (fromℕ< (s≤s (s≤s m≤n))) ≡ zero |
278 p004 = p003 (fromℕ< (s≤s (s≤s m≤n))) ( | 279 p004 = p003 (fromℕ< (s≤s (s≤s m≤n))) ( |
279 begin | 280 begin |
280 fromℕ< (s≤s (s≤s m≤n)) | 281 fromℕ< (s≤s (s≤s m≤n)) |
281 ≡⟨ fromℕ<-irrelevant _ _ (cong suc meq) (s≤s (s≤s m≤n)) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ | 282 -- ≡⟨ fromℕ<-irrelevant _ _ (cong suc meq) (s≤s (s≤s m≤n)) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ |
283 ≡⟨ {!!} ⟩ | |
282 fromℕ< (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) | 284 fromℕ< (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) |
283 ≡⟨ fromℕ<-toℕ {suc (suc n)} (suc t) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ | 285 ≡⟨ fromℕ<-toℕ {suc (suc n)} (suc t) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ |
284 suc t | 286 suc t |
285 ≡⟨ sym e ⟩ | 287 ≡⟨ sym e ⟩ |
286 (perm ⟨$⟩ʳ (# 0)) | 288 (perm ⟨$⟩ʳ (# 0)) |