Mercurial > hg > Members > kono > Proof > galois
comparison fin.agda @ 72:09fa2ab75703
add utilties
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 23:06:10 +0900 |
parents | |
children | 69ed81f8e212 |
comparison
equal
deleted
inserted
replaced
71:da1677fae9ac | 72:09fa2ab75703 |
---|---|
1 {-# OPTIONS --allow-unsolved-metas #-} | |
2 | |
3 module fin where | |
4 | |
5 open import Data.Fin hiding (_<_) | |
6 open import Data.Nat | |
7 open import logic | |
8 open import nat | |
9 open import Relation.Binary.PropositionalEquality | |
10 | |
11 | |
12 n≤n : (n : ℕ) → n Data.Nat.≤ n | |
13 n≤n zero = z≤n | |
14 n≤n (suc n) = s≤s (n≤n n) | |
15 | |
16 <→m≤n : {m n : ℕ} → m < n → m Data.Nat.≤ n | |
17 <→m≤n {zero} lt = z≤n | |
18 <→m≤n {suc m} {zero} () | |
19 <→m≤n {suc m} {suc n} (s≤s lt) = s≤s (<→m≤n lt) | |
20 | |
21 fin<n : {n : ℕ} {f : Fin n} → toℕ f < n | |
22 fin<n {_} {zero} = s≤s z≤n | |
23 fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) | |
24 | |
25 pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0 → Data.Nat.pred (toℕ f) < n | |
26 pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n | |
27 pred<n {suc n} {suc f} (s≤s z≤n) = fin<n | |
28 | |
29 toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x | |
30 toℕ→from {0} {zero} refl = refl | |
31 toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq )) | |
32 | |
33 i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j | |
34 i=j {suc n} zero zero refl = refl | |
35 i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) | |
36 | |
37 fin+1 : { n : ℕ } → Fin n → Fin (suc n) | |
38 fin+1 zero = zero | |
39 fin+1 (suc x) = suc (fin+1 x) | |
40 | |
41 open import Data.Nat.Properties as NatP hiding ( _≟_ ) | |
42 | |
43 fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ≤ a) ≡ fromℕ≤ (<-trans a a<sa) | |
44 fin+1≤ {0} {suc i} (s≤s z≤n) = refl | |
45 fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) ) | |
46 | |
47 fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x | |
48 fin+1-toℕ {suc n} {zero} = refl | |
49 fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x}) | |
50 | |
51 open import Relation.Nullary | |
52 open import Data.Empty | |
53 | |
54 fin-1 : { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero ) → Fin n | |
55 fin-1 zero ne = ⊥-elim (ne refl ) | |
56 fin-1 {n} (suc x) ne = x | |
57 | |
58 fin-1-sx : { n : ℕ } → (x : Fin n) → fin-1 (suc x) (λ ()) ≡ x | |
59 fin-1-sx zero = refl | |
60 fin-1-sx (suc x) = refl | |
61 | |
62 fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero )) → suc (fin-1 x ne ) ≡ x | |
63 fin-1-xs zero ne = ⊥-elim ( ne refl ) | |
64 fin-1-xs (suc x) ne = refl | |
65 | |
66 -- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y → x ≡ y | |
67 -- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq ) | |
68 | |
69 lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ≤ (s≤s lt) ≡ suc (fromℕ≤ lt) | |
70 lemma3 (s≤s lt) = refl | |
71 lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ≤ n<m | |
72 lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl | |
73 lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3 n<m) ) ( cong ( λ k → suc k ) ( lemma12 {n} {m} n<m f refl ) ) | |
74 | |
75 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) | |
76 open import Data.Fin.Properties | |
77 | |
78 lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n | |
79 lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl | |
80 lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl ) | |
81 lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ≤ i<n ≡ fromℕ≤ j<n | |
82 lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ≤ k ) (lemma8 refl )) | |
83 lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c | |
84 lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) | |
85 lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x | |
86 lemma11 {n} {m} {x} n<m = begin | |
87 toℕ (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)) | |
88 ≡⟨ toℕ-fromℕ≤ _ ⟩ | |
89 toℕ x | |
90 ∎ where | |
91 open ≡-Reasoning | |
92 | |
93 |