Mercurial > hg > Members > kono > Proof > galois
comparison FL.agda @ 142:435159e2897a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 10 Sep 2020 20:55:19 +0900 |
parents | 35c0b6878863 |
children | 029a7885fe57 |
comparison
equal
deleted
inserted
replaced
141:35c0b6878863 | 142:435159e2897a |
---|---|
174 FLinsert {suc n} x (cons a y x₁) | inj₁ (case2 lt) = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf a x lt y x₁) | 174 FLinsert {suc n} x (cons a y x₁) | inj₁ (case2 lt) = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf a x lt y x₁) |
175 ... | inj₂ (case1 eq) = cons a y x₁ | 175 ... | inj₂ (case1 eq) = cons a y x₁ |
176 FLinsert {suc n} x (cons a [] x₁) | inj₂ (case2 lt) with FLinsert x [] | inspect ( FLinsert x ) [] | 176 FLinsert {suc n} x (cons a [] x₁) | inj₂ (case2 lt) with FLinsert x [] | inspect ( FLinsert x ) [] |
177 ... | [] | () | 177 ... | [] | () |
178 ... | cons a₁ t x₂ | e = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) | 178 ... | cons a₁ t x₂ | e = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) |
179 FLinsert {suc n} x (cons a (cons a₁ y x₂) (lift a<a₁ , fr-ay)) | inj₂ (case2 lt) = ttf2 a a₁ x (FLinsert x (cons a₁ y x₂)) where | 179 FLinsert {suc n} x (cons a (cons a₁ y x₂) (lift a<a₁ , fr-ay)) | inj₂ (case2 lt) with FLinsert x (cons a₁ y x₂) |
180 ttf2 : {n : ℕ } → (a a₁ x : FL (suc n)) → ( y : FList {suc n} ) → FList {suc n} | 180 ... | [] = cons a (cons x ( cons a₁ [] (Level.lift tt) ) {!!} ) {!!} |
181 ttf2 a a₁ x [] = cons a (cons x ( cons a₁ [] (Level.lift tt) ) {!!} ) {!!} | 181 ... | cons a₂ t x₁ = cons a ( cons a₂ t x₁) ( Level.lift (fromWitness (ttf2 {!!} {!!})) , ( ttf a₂ a (ttf2 {!!} {!!} ) t x₁ )) where |
182 ttf2 a a₁ x (cons a₂ t x₁) = cons a ( cons a₂ t x₁) ( {!!} , ( ttf x a ? t {!!}) ) | 182 ttf2 : fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a₂ t → a f< a₂ |
183 ttf2 = {!!} | |
183 | 184 |
184 fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1 | 185 fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1 |