Mercurial > hg > Members > kono > Proof > galois
comparison FLutil.agda @ 199:6c81c3d535d1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Nov 2020 10:13:22 +0900 |
parents | c93a60686dce |
children | b5b4ee29cbe4 |
comparison
equal
deleted
inserted
replaced
198:c93a60686dce | 199:6c81c3d535d1 |
---|---|
320 AnyFList {suc (suc n)} (x :: y) = subst (λ k → Any (_≡_ (k :: y)) (Flist (suc n) a<sa (∀Flist fmax) (∀Flist fmax) )) | 320 AnyFList {suc (suc n)} (x :: y) = subst (λ k → Any (_≡_ (k :: y)) (Flist (suc n) a<sa (∀Flist fmax) (∀Flist fmax) )) |
321 (fromℕ<-toℕ _ _) ( AnyFList1 (suc n) (toℕ x) a<sa (∀Flist fmax) (∀Flist fmax) fin<n fin<n (AnyFList y)) where | 321 (fromℕ<-toℕ _ _) ( AnyFList1 (suc n) (toℕ x) a<sa (∀Flist fmax) (∀Flist fmax) fin<n fin<n (AnyFList y)) where |
322 AnyFList1 : (i x : ℕ) → (i<n : i < suc (suc n) ) → (L L1 : FList (suc n) ) → (x<n : x < suc (suc n) ) → x < suc i → Any (y ≡_ ) L | 322 AnyFList1 : (i x : ℕ) → (i<n : i < suc (suc n) ) → (L L1 : FList (suc n) ) → (x<n : x < suc (suc n) ) → x < suc i → Any (y ≡_ ) L |
323 → Any (((fromℕ< x<n) :: y) ≡_ ) (Flist i i<n L L1) | 323 → Any (((fromℕ< x<n) :: y) ≡_ ) (Flist i i<n L L1) |
324 AnyFList1 zero x i<n [] L1 (s≤s x<i) _ () | 324 AnyFList1 zero x i<n [] L1 (s≤s x<i) _ () |
325 AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (here refl) = x∈FLins (zero :: a) (Flist 0 i<n L L1) | 325 AnyFList1 zero zero i<n (cons y L xr) L1 x<n (s≤s z≤n) (here refl) = x∈FLins (zero :: y) (Flist 0 i<n L L1) |
326 AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (there wh) with AnyFList1 zero zero i<n L L1 x<n (s≤s z≤n) wh | 326 AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (there wh) = insAny _ (AnyFList1 zero zero i<n L L1 x<n (s≤s z≤n) wh) |
327 ... | t = {!!} | 327 AnyFList1 (suc i) x (s≤s i<n) (cons y L x₁) L1 x<n (s≤s x<i) (here refl) with <-fcmp (fromℕ< x<n) (fromℕ< (s≤s i<n)) |
328 AnyFList1 (suc i) x i<n L L1 x<n x<i wh = {!!} | 328 ... | tri< a ¬b ¬c = insAny _ af1 where |
329 af1 : Any (_≡_ (fromℕ< x<n :: y)) (Flist (suc i) (s≤s i<n) L L1) | |
330 af1 = AnyFList1 (suc i) x (s≤s i<n) L L1 x<n (s≤s x<i) {!!} | |
331 ... | tri≈ ¬a b ¬c = subst (λ k → Any (_≡_ (fromℕ< x<n :: y)) (FLinsert k (Flist (suc i) (s≤s i<n) L L1) )) (cong (λ k → k :: y) b) | |
332 (x∈FLins (fromℕ< x<n :: y) (Flist (suc i) (s≤s i<n) L L1)) | |
333 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> x<i (subst₂ (λ j k → suc (suc k) ≤ j ) (toℕ-fromℕ< _) (toℕ-fromℕ< _) c) ) | |
334 AnyFList1 (suc i) x i<n (cons a L x₁) L1 x<n (s≤s x<i) (there wh) = {!!} | |
329 | 335 |
330 -- FLinsert membership | 336 -- FLinsert membership |
331 | 337 |
332 module FLMB { n : ℕ } where | 338 module FLMB { n : ℕ } where |
333 | 339 |