Mercurial > hg > Members > kono > Proof > galois
comparison src/FLutil.agda @ 255:6d1619d9f880
library
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jan 2021 10:18:08 +0900 |
parents | FLutil.agda@d782dd481a26 |
children | f59a9f4cfd78 |
comparison
equal
deleted
inserted
replaced
254:a5b3061f15ee | 255:6d1619d9f880 |
---|---|
1 {-# OPTIONS --allow-unsolved-metas #-} | |
2 module FLutil where | |
3 | |
4 open import Level hiding ( suc ; zero ) | |
5 open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) | |
6 open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) | |
7 open import Data.Fin.Permutation -- hiding ([_,_]) | |
8 open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) | |
9 open import Data.Nat.Properties as DNP | |
10 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | |
11 open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) | |
12 open import Data.Product | |
13 open import Relation.Nullary | |
14 open import Data.Empty | |
15 open import Relation.Binary.Core | |
16 open import Relation.Binary.Definitions | |
17 open import logic | |
18 open import nat | |
19 | |
20 infixr 100 _::_ | |
21 | |
22 data FL : (n : ℕ )→ Set where | |
23 f0 : FL 0 | |
24 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) | |
25 | |
26 data _f<_ : {n : ℕ } (x : FL n ) (y : FL n) → Set where | |
27 f<n : {m : ℕ } {xn yn : Fin (suc m) } {xt yt : FL m} → xn Data.Fin.< yn → (xn :: xt) f< ( yn :: yt ) | |
28 f<t : {m : ℕ } {xn : Fin (suc m) } {xt yt : FL m} → xt f< yt → (xn :: xt) f< ( xn :: yt ) | |
29 | |
30 FLeq : {n : ℕ } {xn yn : Fin (suc n)} {x : FL n } {y : FL n} → xn :: x ≡ yn :: y → ( xn ≡ yn ) × (x ≡ y ) | |
31 FLeq refl = refl , refl | |
32 | |
33 FLpos : {n : ℕ} → FL (suc n) → Fin (suc n) | |
34 FLpos (x :: _) = x | |
35 | |
36 f-<> : {n : ℕ } {x : FL n } {y : FL n} → x f< y → y f< x → ⊥ | |
37 f-<> (f<n x) (f<n x₁) = nat-<> x x₁ | |
38 f-<> (f<n x) (f<t lt2) = nat-≡< refl x | |
39 f-<> (f<t lt) (f<n x) = nat-≡< refl x | |
40 f-<> (f<t lt) (f<t lt2) = f-<> lt lt2 | |
41 | |
42 f-≡< : {n : ℕ } {x : FL n } {y : FL n} → x ≡ y → y f< x → ⊥ | |
43 f-≡< refl (f<n x) = nat-≡< refl x | |
44 f-≡< refl (f<t lt) = f-≡< refl lt | |
45 | |
46 FLcmp : {n : ℕ } → Trichotomous {Level.zero} {FL n} _≡_ _f<_ | |
47 FLcmp f0 f0 = tri≈ (λ ()) refl (λ ()) | |
48 FLcmp (xn :: xt) (yn :: yt) with <-fcmp xn yn | |
49 ... | tri< a ¬b ¬c = tri< (f<n a) (λ eq → nat-≡< (cong toℕ (proj₁ (FLeq eq)) ) a) (λ lt → f-<> lt (f<n a) ) | |
50 ... | tri> ¬a ¬b c = tri> (λ lt → f-<> lt (f<n c) ) (λ eq → nat-≡< (cong toℕ (sym (proj₁ (FLeq eq)) )) c) (f<n c) | |
51 ... | tri≈ ¬a refl ¬c with FLcmp xt yt | |
52 ... | tri< a ¬b ¬c₁ = tri< (f<t a) (λ eq → ¬b (proj₂ (FLeq eq) )) (λ lt → f-<> lt (f<t a) ) | |
53 ... | tri≈ ¬a₁ refl ¬c₁ = tri≈ (λ lt → f-≡< refl lt ) refl (λ lt → f-≡< refl lt ) | |
54 ... | tri> ¬a₁ ¬b c = tri> (λ lt → f-<> lt (f<t c) ) (λ eq → ¬b (proj₂ (FLeq eq) )) (f<t c) | |
55 | |
56 f<-trans : {n : ℕ } { x y z : FL n } → x f< y → y f< z → x f< z | |
57 f<-trans {suc n} (f<n x) (f<n x₁) = f<n ( Data.Fin.Properties.<-trans x x₁ ) | |
58 f<-trans {suc n} (f<n x) (f<t y<z) = f<n x | |
59 f<-trans {suc n} (f<t x<y) (f<n x) = f<n x | |
60 f<-trans {suc n} (f<t x<y) (f<t y<z) = f<t (f<-trans x<y y<z) | |
61 | |
62 infixr 250 _f<?_ | |
63 | |
64 _f<?_ : {n : ℕ} → (x y : FL n ) → Dec (x f< y ) | |
65 x f<? y with FLcmp x y | |
66 ... | tri< a ¬b ¬c = yes a | |
67 ... | tri≈ ¬a refl ¬c = no ( ¬a ) | |
68 ... | tri> ¬a ¬b c = no ( ¬a ) | |
69 | |
70 _f≤_ : {n : ℕ } (x : FL n ) (y : FL n) → Set | |
71 _f≤_ x y = (x ≡ y ) ∨ (x f< y ) | |
72 | |
73 FL0 : {n : ℕ } → FL n | |
74 FL0 {zero} = f0 | |
75 FL0 {suc n} = zero :: FL0 | |
76 | |
77 fmax : { n : ℕ } → FL n | |
78 fmax {zero} = f0 | |
79 fmax {suc n} = fromℕ< a<sa :: fmax {n} | |
80 | |
81 fmax< : { n : ℕ } → {x : FL n } → ¬ (fmax f< x ) | |
82 fmax< {suc n} {x :: y} (f<n lt) = nat-≤> (fmax1 x) lt where | |
83 fmax1 : {n : ℕ } → (x : Fin (suc n)) → toℕ x ≤ toℕ (fromℕ< {n} a<sa) | |
84 fmax1 {zero} zero = z≤n | |
85 fmax1 {suc n} zero = z≤n | |
86 fmax1 {suc n} (suc x) = s≤s (fmax1 x) | |
87 fmax< {suc n} {x :: y} (f<t lt) = fmax< {n} {y} lt | |
88 | |
89 fmax¬ : { n : ℕ } → {x : FL n } → ¬ ( x ≡ fmax ) → x f< fmax | |
90 fmax¬ {zero} {f0} ne = ⊥-elim ( ne refl ) | |
91 fmax¬ {suc n} {x} ne with FLcmp x fmax | |
92 ... | tri< a ¬b ¬c = a | |
93 ... | tri≈ ¬a b ¬c = ⊥-elim ( ne b) | |
94 ... | tri> ¬a ¬b c = ⊥-elim (fmax< c) | |
95 | |
96 x≤fmax : {n : ℕ } → {x : FL n} → x f≤ fmax | |
97 x≤fmax {n} {x} with FLcmp x fmax | |
98 ... | tri< a ¬b ¬c = case2 a | |
99 ... | tri≈ ¬a b ¬c = case1 b | |
100 ... | tri> ¬a ¬b c = ⊥-elim ( fmax< c ) | |
101 | |
102 open import Data.Nat.Properties using ( ≤-trans ; <-trans ) | |
103 fsuc : { n : ℕ } → (x : FL n ) → x f< fmax → FL n | |
104 fsuc {n} (x :: y) (f<n lt) = fromℕ< fsuc1 :: y where | |
105 fsuc1 : suc (toℕ x) < n | |
106 fsuc1 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) ) | |
107 fsuc (x :: y) (f<t lt) = x :: fsuc y lt | |
108 | |
109 open import fin | |
110 | |
111 flist1 : {n : ℕ } (i : ℕ) → i < suc n → List (FL n) → List (FL n) → List (FL (suc n)) | |
112 flist1 zero i<n [] _ = [] | |
113 flist1 zero i<n (a ∷ x ) z = ( zero :: a ) ∷ flist1 zero i<n x z | |
114 flist1 (suc i) (s≤s i<n) [] z = flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z | |
115 flist1 (suc i) i<n (a ∷ x ) z = ((fromℕ< i<n ) :: a ) ∷ flist1 (suc i) i<n x z | |
116 | |
117 flist : {n : ℕ } → FL n → List (FL n) | |
118 flist {zero} f0 = f0 ∷ [] | |
119 flist {suc n} (x :: y) = flist1 n a<sa (flist y) (flist y) | |
120 | |
121 FL1 : List ℕ → List ℕ | |
122 FL1 [] = [] | |
123 FL1 (x ∷ y) = suc x ∷ FL1 y | |
124 | |
125 FL→plist : {n : ℕ} → FL n → List ℕ | |
126 FL→plist {0} f0 = [] | |
127 FL→plist {suc n} (zero :: y) = zero ∷ FL1 (FL→plist y) | |
128 FL→plist {suc n} (suc x :: y) with FL→plist y | |
129 ... | [] = zero ∷ [] | |
130 ... | x1 ∷ t = suc x1 ∷ FL2 x t where | |
131 FL2 : {n : ℕ} → Fin n → List ℕ → List ℕ | |
132 FL2 zero y = zero ∷ FL1 y | |
133 FL2 (suc i) [] = zero ∷ [] | |
134 FL2 (suc i) (x ∷ y) = suc x ∷ FL2 i y | |
135 | |
136 tt0 = (# 2) :: (# 1) :: (# 0) :: zero :: f0 | |
137 tt1 = FL→plist tt0 | |
138 | |
139 open _∧_ | |
140 | |
141 find-zero : {n i : ℕ} → List ℕ → i < n → Fin n ∧ List ℕ | |
142 find-zero [] i<n = record { proj1 = fromℕ< i<n ; proj2 = [] } | |
143 find-zero x (s≤s z≤n) = record { proj1 = fromℕ< (s≤s z≤n) ; proj2 = x } | |
144 find-zero (zero ∷ y) (s≤s (s≤s i<n)) = record { proj1 = fromℕ< (s≤s (s≤s i<n)) ; proj2 = y } | |
145 find-zero (suc x ∷ y) (s≤s (s≤s i<n)) with find-zero y (s≤s i<n) | |
146 ... | record { proj1 = i ; proj2 = y1 } = record { proj1 = suc i ; proj2 = suc x ∷ y1 } | |
147 | |
148 plist→FL : {n : ℕ} → List ℕ → FL n -- wrong implementation | |
149 plist→FL {zero} [] = f0 | |
150 plist→FL {suc n} [] = zero :: plist→FL {n} [] | |
151 plist→FL {zero} x = f0 | |
152 plist→FL {suc n} x with find-zero x a<sa | |
153 ... | record { proj1 = i ; proj2 = y } = i :: plist→FL y | |
154 | |
155 tt2 = 2 ∷ 1 ∷ 0 ∷ 3 ∷ [] | |
156 tt3 : FL 4 | |
157 tt3 = plist→FL tt2 | |
158 tt4 = FL→plist tt3 | |
159 tt5 = plist→FL {4} (FL→plist tt0) | |
160 | |
161 -- maybe FL→iso can be easier using this ... | |
162 -- FL→plist-iso : {n : ℕ} → (f : FL n ) → plist→FL (FL→plist f ) ≡ f | |
163 -- FL→plist-iso = {!!} | |
164 -- FL→plist-inject : {n : ℕ} → (f g : FL n ) → FL→plist f ≡ FL→plist g → f ≡ g | |
165 -- FL→plist-inject = {!!} | |
166 | |
167 open import Relation.Binary as B hiding (Decidable; _⇔_) | |
168 open import Data.Sum.Base as Sum -- inj₁ | |
169 open import Relation.Nary using (⌊_⌋) | |
170 open import Data.List.Fresh hiding ([_]) | |
171 | |
172 FList : (n : ℕ ) → Set | |
173 FList n = List# (FL n) ⌊ _f<?_ ⌋ | |
174 | |
175 fr1 : FList 3 | |
176 fr1 = | |
177 ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) ∷# | |
178 ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) ∷# | |
179 ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) ∷# | |
180 ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) ∷# | |
181 ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) ∷# | |
182 [] | |
183 | |
184 open import Data.Product | |
185 open import Relation.Nullary.Decidable hiding (⌊_⌋) | |
186 -- open import Data.Bool hiding (_<_ ; _≤_ ) | |
187 open import Data.Unit.Base using (⊤ ; tt) | |
188 | |
189 -- fresh a [] = ⊤ | |
190 -- fresh a (x ∷# xs) = R a x × fresh a xs | |
191 | |
192 -- toWitness | |
193 -- ttf< : {n : ℕ } → {x a : FL n } → x f< a → T (isYes (x f<? a)) | |
194 -- ttf< {n} {x} {a} x<a with x f<? a | |
195 -- ... | yes y = subst (λ k → Data.Bool.T k ) refl tt | |
196 -- ... | no nn = ⊥-elim ( nn x<a ) | |
197 | |
198 ttf : {n : ℕ } {x a : FL (n)} → x f< a → (y : FList (n)) → fresh (FL (n)) ⌊ _f<?_ ⌋ a y → fresh (FL (n)) ⌊ _f<?_ ⌋ x y | |
199 ttf _ [] fr = Level.lift tt | |
200 ttf {_} {x} {a} lt (cons a₁ y x1) (lift lt1 , x2 ) = (Level.lift (fromWitness (ttf1 lt1 lt ))) , ttf (ttf1 lt1 lt) y x1 where | |
201 ttf1 : True (a f<? a₁) → x f< a → x f< a₁ | |
202 ttf1 t x<a = f<-trans x<a (toWitness t) | |
203 | |
204 -- by https://gist.github.com/aristidb/1684202 | |
205 | |
206 FLinsert : {n : ℕ } → FL n → FList n → FList n | |
207 FLfresh : {n : ℕ } → (a x : FL (suc n) ) → (y : FList (suc n) ) → a f< x | |
208 → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a (FLinsert x y) | |
209 FLinsert {zero} f0 y = f0 ∷# [] | |
210 FLinsert {suc n} x [] = x ∷# [] | |
211 FLinsert {suc n} x (cons a y x₁) with FLcmp x a | |
212 ... | tri≈ ¬a b ¬c = cons a y x₁ | |
213 ... | tri< lt ¬b ¬c = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf lt y x₁) | |
214 FLinsert {suc n} x (cons a [] x₁) | tri> ¬a ¬b lt = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) | |
215 FLinsert {suc n} x (cons a y yr) | tri> ¬a ¬b a<x = cons a (FLinsert x y) (FLfresh a x y a<x yr ) | |
216 | |
217 FLfresh a x [] a<x (Level.lift tt) = Level.lift (fromWitness a<x) , Level.lift tt | |
218 FLfresh a x (cons b [] (Level.lift tt)) a<x (Level.lift a<b , a<y) with FLcmp x b | |
219 ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , Level.lift tt | |
220 ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , Level.lift tt | |
221 ... | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt | |
222 FLfresh a x (cons b y br) a<x (Level.lift a<b , a<y) with FLcmp x b | |
223 ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , ttf (toWitness a<b) y br | |
224 ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , ttf a<x y br | |
225 FLfresh a x (cons b [] br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = | |
226 Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt | |
227 FLfresh a x (cons b (cons a₁ y x₁) br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = | |
228 Level.lift a<b , FLfresh a x (cons a₁ y x₁) a<x a<y | |
229 | |
230 fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1 | |
231 | |
232 open import Data.List.Fresh.Relation.Unary.Any | |
233 open import Data.List.Fresh.Relation.Unary.All | |
234 | |
235 x∈FLins : {n : ℕ} → (x : FL n ) → (xs : FList n) → Any (x ≡_) (FLinsert x xs) | |
236 x∈FLins {zero} f0 [] = here refl | |
237 x∈FLins {zero} f0 (cons f0 xs x) = here refl | |
238 x∈FLins {suc n} x [] = here refl | |
239 x∈FLins {suc n} x (cons a xs x₁) with FLcmp x a | |
240 ... | tri< x<a ¬b ¬c = here refl | |
241 ... | tri≈ ¬a b ¬c = here b | |
242 x∈FLins {suc n} x (cons a [] x₁) | tri> ¬a ¬b a<x = there ( here refl ) | |
243 x∈FLins {suc n} x (cons a (cons a₁ xs x₂) x₁) | tri> ¬a ¬b a<x = there ( x∈FLins x (cons a₁ xs x₂) ) | |
244 | |
245 nextAny : {n : ℕ} → {x h : FL n } → {L : FList n} → {hr : fresh (FL n) ⌊ _f<?_ ⌋ h L } → Any (x ≡_) L → Any (x ≡_) (cons h L hr ) | |
246 nextAny (here x₁) = there (here x₁) | |
247 nextAny (there any) = there (there any) | |
248 | |
249 insAny : {n : ℕ} → {x h : FL n } → (xs : FList n) → Any (x ≡_) xs → Any (x ≡_) (FLinsert h xs) | |
250 insAny {zero} {f0} {f0} (cons a L xr) (here refl) = here refl | |
251 insAny {zero} {f0} {f0} (cons a L xr) (there any) = insAny {zero} {f0} {f0} L any | |
252 insAny {suc n} {x} {h} (cons a L xr) any with FLcmp h a | |
253 ... | tri< x<a ¬b ¬c = there any | |
254 ... | tri≈ ¬a b ¬c = any | |
255 insAny {suc n} {a} {h} (cons a [] (Level.lift tt)) (here refl) | tri> ¬a ¬b c = here refl | |
256 insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (here refl) | tri> ¬a ¬b c = here refl | |
257 insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (there any) | tri> ¬a ¬b c = there (insAny (cons a₁ L x₁) any) | |
258 | |
259 -- FLinsert membership | |
260 | |
261 module FLMB { n : ℕ } where | |
262 | |
263 FL-Setoid : Setoid Level.zero Level.zero | |
264 FL-Setoid = record { Carrier = FL n ; _≈_ = _≡_ ; isEquivalence = record { sym = sym ; refl = refl ; trans = trans }} | |
265 | |
266 open import Data.List.Fresh.Membership.Setoid FL-Setoid | |
267 | |
268 FLinsert-mb : (x : FL n ) → (xs : FList n) → x ∈ FLinsert x xs | |
269 FLinsert-mb x xs = x∈FLins {n} x xs | |
270 | |
271 |