Mercurial > hg > Members > kono > Proof > galois
comparison sym3.agda @ 120:77cb357b81a9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 03 Sep 2020 20:24:00 +0900 |
parents | 2dae51792e1a |
children | 54035eed6b9b |
comparison
equal
deleted
inserted
replaced
119:2dae51792e1a | 120:77cb357b81a9 |
---|---|
52 stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x | 52 stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x |
53 | 53 |
54 open import logic | 54 open import logic |
55 | 55 |
56 stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) | 56 stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) |
57 stage12 x sx with perm→FL x | 57 stage12 x uni = case1 prefl |
58 ... | zero :: (zero :: (zero :: f0)) = case1 (pleq _ _ refl) | 58 stage12 x (comm x1 y1 ) = {!!} |
59 ... | suc zero :: (zero :: (zero :: f0)) = {!!} | 59 stage12 _ (gen {x} {y} sx sy) with stage12 x sx | stage12 y sy -- x =p= pid : t , y =p= pid : s |
60 ... | suc (suc zero) :: (zero :: (zero :: f0)) = {!!} | 60 ... | case1 t | case1 s = case1 ( {!!} ) |
61 ... | zero :: (suc zero :: (zero :: f0)) = {!!} | 61 ... | case1 t | case2 (case1 x₁) = {!!} |
62 ... | suc zero :: (suc zero :: (zero :: f0)) = {!!} | 62 ... | case1 t | case2 (case2 x₁) = {!!} |
63 ... | suc (suc zero) :: (suc zero :: (zero :: f0)) = {!!} | 63 ... | case2 t | case1 s = {!!} |
64 ... | case2 (case1 s) | case2 (case1 t) = case2 (case2 (pleq _ _ {!!} )) | |
65 ... | case2 (case1 s) | case2 (case2 t) = {!!} | |
66 ... | case2 (case2 s) | case2 (case1 t) = {!!} | |
67 ... | case2 (case2 s) | case2 (case2 t) = {!!} | |
68 stage12 _ (ccong {y} x=y sx) with stage12 y sx | |
69 ... | case1 id = case1 ( ptrans (psym x=y ) id ) | |
70 ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) | |
71 ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) | |
64 | 72 |
65 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid | 73 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid |
66 solved1 = {!!} | 74 solved1 = {!!} |