Mercurial > hg > Members > kono > Proof > galois
comparison sym3.agda @ 124:803a45b280ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Sep 2020 19:07:39 +0900 |
parents | 465c42c9a99e |
children | 11ccc9fe91c3 |
comparison
equal
deleted
inserted
replaced
123:465c42c9a99e | 124:803a45b280ef |
---|---|
95 -- ≡⟨ peq p33=4 q ⟩ | 95 -- ≡⟨ peq p33=4 q ⟩ |
96 -- p4 ⟨$⟩ʳ q | 96 -- p4 ⟨$⟩ʳ q |
97 -- ∎ ) } | 97 -- ∎ ) } |
98 | 98 |
99 st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) | 99 st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) |
100 st02 = {!!} | 100 st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h |
101 -- st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h | 101 ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) |
102 -- ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) | 102 ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) |
103 -- ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) | 103 ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = |
104 -- ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} | 104 case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) |
105 -- ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} | 105 ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = |
106 -- ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} | 106 case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) |
107 -- ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} | 107 ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = |
108 -- ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} | 108 case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) |
109 -- ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} | 109 ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = |
110 -- ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} | 110 case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) |
111 -- ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} | 111 ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = |
112 case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) | |
113 ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} | |
114 ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} | |
115 ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} | |
116 ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} | |
117 ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} | |
112 | 118 |
113 stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) | 119 stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) |
114 stage12 = {!!} | 120 stage12 = {!!} |
115 -- stage12 x uni = case1 prefl | 121 -- stage12 x uni = case1 prefl |
116 -- stage12 x (comm {g} {h} x1 y1 ) = st02 g h | 122 -- stage12 x (comm {g} {h} x1 y1 ) = st02 g h |
150 ≡⟨ sym (f=g q) ⟩ | 156 ≡⟨ sym (f=g q) ⟩ |
151 f ⟨$⟩ʳ q | 157 f ⟨$⟩ʳ q |
152 ≡⟨ f=e q ⟩ | 158 ≡⟨ f=e q ⟩ |
153 q | 159 q |
154 ∎ | 160 ∎ |
155 solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y | 161 solved1 _ (comm {g} {h} x y) = {!!} |
156 ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) | 162 -- solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y |
157 ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) | 163 -- ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) |
158 ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) | 164 -- ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) |
159 ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } | 165 -- ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) |
160 ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } | 166 -- ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } |
161 ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } | 167 -- ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } |
162 ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } | 168 -- ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } |
169 -- ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } | |
163 | 170 |
164 -- = ptrans ( comm-resp {g} {h} t s ) ( comm-refl ? ) | 171 -- = ptrans ( comm-resp {g} {h} t s ) ( comm-refl ? ) |