Mercurial > hg > Members > kono > Proof > galois
comparison Putil.agda @ 96:b43c4a7c57d9
pins done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 30 Aug 2020 08:40:31 +0900 |
parents | 7030fe612746 |
children | f4ff8e352aa7 |
comparison
equal
deleted
inserted
replaced
95:7030fe612746 | 96:b43c4a7c57d9 |
---|---|
179 p13 = cong (λ k → suc k ) (fromℕ<-toℕ _ (s≤s m≤n) ) | 179 p13 = cong (λ k → suc k ) (fromℕ<-toℕ _ (s≤s m≤n) ) |
180 ... | tri> ¬a ¬b c = p16 (suc x) refl where | 180 ... | tri> ¬a ¬b c = p16 (suc x) refl where |
181 p16 : (y : Fin (suc (suc n))) → y ≡ suc x → p← y ≡ suc x | 181 p16 : (y : Fin (suc (suc n))) → y ≡ suc x → p← y ≡ suc x |
182 p16 zero eq = ⊥-elim ( nat-≡< (cong (λ k → suc (toℕ k) ) eq) (s≤s (s≤s (z≤n)))) | 182 p16 zero eq = ⊥-elim ( nat-≡< (cong (λ k → suc (toℕ k) ) eq) (s≤s (s≤s (z≤n)))) |
183 p16 (suc y) eq with <-cmp (toℕ y) (suc m) -- suc (suc m) < toℕ (suc x) | 183 p16 (suc y) eq with <-cmp (toℕ y) (suc m) -- suc (suc m) < toℕ (suc x) |
184 ... | tri< a ¬b ¬c = p17 where -- x = suc m case | 184 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< refl ( ≤-trans c (subst (λ k → k < suc m) p17 a )) ) where |
185 p18 : toℕ y ≡ suc (toℕ x) | 185 -- x = suc m case, c : suc (suc m) ≤ suc (toℕ x), a : suc (toℕ y) ≤ suc m, suc y ≡ suc x |
186 p18 = begin | 186 p17 : toℕ y ≡ toℕ x |
187 toℕ y | 187 p17 with <-cmp (toℕ y) (toℕ x) | cong toℕ eq |
188 ≡⟨ {!!} ⟩ | 188 ... | tri< a ¬b ¬c | seq = ⊥-elim ( nat-≡< seq (s≤s a) ) |
189 suc (toℕ y) | 189 ... | tri≈ ¬a b ¬c | seq = b |
190 ≡⟨⟩ | 190 ... | tri> ¬a ¬b c | seq = ⊥-elim ( nat-≡< (sym seq) (s≤s c)) |
191 toℕ (suc y) | |
192 ≡⟨ cong toℕ eq ⟩ | |
193 suc (toℕ x) | |
194 ∎ | |
195 p17 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x | |
196 p17 = begin | |
197 fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) | |
198 ≡⟨ fromℕ<-irrelevant _ _ p18 _ (s≤s (fin<n {suc n} {x})) ⟩ | |
199 suc (fromℕ< (fin<n {suc n} {x} )) | |
200 ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ | |
201 suc x | |
202 ∎ | |
203 ... | tri≈ ¬a b ¬c = eq | 191 ... | tri≈ ¬a b ¬c = eq |
204 ... | tri> ¬a ¬b c₁ = eq | 192 ... | tri> ¬a ¬b c₁ = eq |
205 ... | tri< a ¬b ¬c = p10 (fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) ))) refl where | 193 ... | tri< a ¬b ¬c = p10 (fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) ))) refl where |
206 p10 : (y : Fin (suc (suc n)) ) → y ≡ fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) → p← y ≡ suc x | 194 p10 : (y : Fin (suc (suc n)) ) → y ≡ fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) → p← y ≡ suc x |
207 p10 zero () | 195 p10 zero () |