Mercurial > hg > Members > kono > Proof > galois
comparison src/Gutil.agda @ 271:c209aebeab2a
Fundamental again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 16:40:39 +0900 |
parents | 6d1619d9f880 |
children | 386ece574509 |
comparison
equal
deleted
inserted
replaced
270:0081e1ed5ead | 271:c209aebeab2a |
---|---|
126 (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ | 126 (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ |
127 (f ∙ g) ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ | 127 (f ∙ g) ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ |
128 (f ∙ g) ⁻¹ | 128 (f ∙ g) ⁻¹ |
129 ∎ where open EqReasoning (Algebra.Group.setoid G) | 129 ∎ where open EqReasoning (Algebra.Group.setoid G) |
130 | 130 |
131 open import Tactic.MonoidSolver using (solve; solve-macro) | |
132 | |
133 lemma7 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ | |
134 lemma7 f g = begin | |
135 g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩ | |
136 g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩ | |
137 g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ solve monoid ⟩ | |
138 g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩ | |
139 g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ solve monoid ⟩ | |
140 (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ | |
141 (f ∙ g) ⁻¹ ∙ ε ≈⟨ solve monoid ⟩ | |
142 (f ∙ g) ⁻¹ | |
143 ∎ where open EqReasoning (Algebra.Group.setoid G) | |
144 |