Mercurial > hg > Members > kono > Proof > galois
comparison sym3.agda @ 111:d3da6e2c0d90
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Sep 2020 21:58:15 +0900 |
parents | 405c1f727ffe |
children | 2dae51792e1a |
comparison
equal
deleted
inserted
replaced
110:cb3281e83229 | 111:d3da6e2c0d90 |
---|---|
24 solvable.end sym3solvable x d = solved1 x d where | 24 solvable.end sym3solvable x d = solved1 x d where |
25 | 25 |
26 open import Data.List using ( List ; [] ; _∷_ ) | 26 open import Data.List using ( List ; [] ; _∷_ ) |
27 | 27 |
28 open Solvable (Symmetric 3) | 28 open Solvable (Symmetric 3) |
29 -- open Group (Symmetric 2) using (_⁻¹) | |
30 | 29 |
31 p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid | 30 p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid |
32 p0 = record { peq = p00 } where | 31 p0id = pleq _ _ refl |
33 p00 : (q : Fin 3) → (FL→perm ((# 0) :: ((# 0) :: ((# 0) :: f0))) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q) | |
34 p00 zero = refl | |
35 p00 (suc zero) = refl | |
36 p00 (suc (suc zero)) = refl | |
37 | 32 |
38 p1 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) | 33 p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) |
34 p1 = FL→perm ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) | |
35 p2 = FL→perm ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) | |
36 p3 = FL→perm ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) | |
37 p4 = FL→perm ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) | |
38 p5 = FL→perm ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) | |
39 t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] | |
39 | 40 |
40 open _=p=_ | 41 open _=p=_ |
41 | 42 |
42 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid | 43 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid |
43 solved1 = {!!} | 44 solved1 = {!!} |