Mercurial > hg > Members > kono > Proof > galois
comparison FLComm.agda @ 213:f0ceffb6a7e9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Dec 2020 00:08:47 +0900 |
parents | fa1e0944d1a0 |
children | b438377a7e11 |
comparison
equal
deleted
inserted
replaced
212:fa1e0944d1a0 | 213:f0ceffb6a7e9 |
---|---|
109 open AnyComm | 109 open AnyComm |
110 anyComm : (P Q : FList n) → AnyComm P Q | 110 anyComm : (P Q : FList n) → AnyComm P Q |
111 anyComm [] [] = record { commList = [] ; commAny = λ _ _ () } | 111 anyComm [] [] = record { commList = [] ; commAny = λ _ _ () } |
112 anyComm [] (cons q Q qr) = record { commList = [] ; commAny = λ _ _ () } | 112 anyComm [] (cons q Q qr) = record { commList = [] ; commAny = λ _ _ () } |
113 anyComm (cons p P pr) [] = record { commList = [] ; commAny = λ _ _ _ () } | 113 anyComm (cons p P pr) [] = record { commList = [] ; commAny = λ _ _ _ () } |
114 anyComm (cons p P pr) Q = anyc0n Q where | 114 anyComm (cons p P pr) Q = anyc0n Q Q where |
115 anyc00 : (Q : FList n) (q : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ q Q → fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) | 115 anyc0n : (Q Q1 : FList n) → AnyComm (cons p P pr) Q1 |
116 anyc00 : (Q Q1 : FList n) (q : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ q Q1 → fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) | |
116 anyc00 = {!!} | 117 anyc00 = {!!} |
117 anyc01 : (Q : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q ) → (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → | 118 anyc01 : (Q Q1 : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q1 qr) → |
118 Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr)) | 119 Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) (anyc00 Q Q1 q qr)) |
119 anyc01 Q q qr p q (here refl) (here refl) = here refl | 120 anyc01 Q Q1 q qr p q (here refl) (here refl) = here refl |
120 anyc01 Q q qr p q₁ (here refl) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p q₁ (here refl) anyq ) | 121 anyc01 Q Q1 q qr p q₁ (here refl) (there anyq) = there (commAny (anyc0n Q Q1) p q₁ (here refl) anyq ) |
121 anyc01 Q q qr p₁ q (there anyp) (here refl) = anyc02 Q q qr (commAny (anyComm P (cons q Q qr)) p₁ q anyp (here refl)) where | 122 anyc01 Q Q1 q qr p₁ q (there anyp) (here refl) with commAny (anyc0n Q []) p₁ q (there anyp) {!!} -- Any (_≡_ q) Q |
122 anyc02 : (Q : FList n) (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q ) | 123 ... | t = {!!} |
123 → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (commList (anyComm P (cons q Q qr))) | 124 where |
124 → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr)) | 125 -- anyc02 Q p₁ q qr anyp where |
125 anyc02 Q q qr t = {!!} | 126 anyc02 : {P : FList n} {p₂ : FL n} {pr₂ : fresh (FL n) ⌊ _f<?_ ⌋ p₂ P} |
126 anyc01 Q q qr p₁ q₁ (there anyp) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p₁ q₁ (there anyp) anyq ) | 127 → (Q1 : FList n) (p₁ q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → Any (_≡_ p₁) (cons p₂ P pr₂) |
127 anyc0n : (Q : FList n) → AnyComm (cons p P pr) Q | 128 → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) (anyc00 Q Q1 q qr)) |
128 anyc0n [] = record { commList = [] ; commAny = λ _ _ _ () } | 129 anyc02 {P} Q p₁ q qr (here refl) = {!!} |
129 anyc0n (cons q Q qr ) = record { commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) (anyc00 Q q qr) | 130 anyc02 {P} Q p₁ q qr (there any) = {!!} |
130 ; commAny = anyc01 Q q qr } | 131 anyc01 Q Q1 q qr p₁ q₁ (there anyp) (there anyq) = there (commAny (anyc0n Q Q1) p₁ q₁ (there anyp) anyq ) |
132 anyc0n Q1 [] = record { commList = (commList (anyComm P Q)) ; commAny = λ _ _ _ () } | |
133 anyc0n Q1 (cons q Q2 qr ) = record { commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q2)) (anyc00 Q Q2 q qr) | |
134 ; commAny = anyc01 Q Q2 q qr } | |
131 | 135 |
132 -- {-# TERMINATING #-} | 136 -- {-# TERMINATING #-} |
133 CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) | 137 CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) |
134 CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) | 138 CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) |
135 CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where | 139 CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where |