Mercurial > hg > Members > kono > Proof > galois
comparison src/sym2n.agda @ 331:ee6b8f4cbf4c default tip
safe mode
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2024 16:48:09 +0900 |
parents | e9de2bfef88d |
children |
comparison
equal
deleted
inserted
replaced
330:1ff0b95e437f | 331:ee6b8f4cbf4c |
---|---|
1 {-# OPTIONS --safe #-} | 1 {-# OPTIONS --cubical-compatible --safe #-} |
2 open import Level hiding ( suc ; zero ) | 2 open import Level hiding ( suc ; zero ) |
3 open import Algebra | |
4 module sym2n where | 3 module sym2n where |
5 | 4 |
6 open import Symmetric | 5 open import Symmetric |
7 open import Data.Unit | 6 open import Data.Unit |
8 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) | |
9 open import Function | |
10 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) | 7 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) |
11 open import Relation.Nullary | |
12 open import Data.Empty | |
13 open import Data.Product | |
14 | 8 |
15 open import Gutil | 9 open import Gutil |
16 open import Putil | 10 open import Putil |
17 open import Solvable using (solvable) | 11 open import Solvable using (solvable) |
18 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | 12 open import Relation.Binary.PropositionalEquality hiding ( [_] ) |
19 | 13 |
20 open import Data.Fin | 14 open import Data.Fin |
21 open import Data.Fin.Permutation hiding (_∘ₚ_) | 15 open import Data.Fin.Permutation |
22 | 16 |
23 infixr 200 _∘ₚ_ | 17 open import FLutil |
24 _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ | 18 open import Data.List.Fresh |
25 | 19 open import Data.List.Fresh.Relation.Unary.Any |
20 open import FLComm | |
21 open import Data.List | |
26 | 22 |
27 sym2solvable : solvable (Symmetric 2) | 23 sym2solvable : solvable (Symmetric 2) |
28 solvable.dervied-length sym2solvable = 1 | 24 solvable.dervied-length sym2solvable = 1 |
29 solvable.end sym2solvable x d = solved1 x d where | 25 solvable.end sym2solvable x d = solved1 x d where |
30 | 26 |
31 open import Data.List using ( List ; [] ; _∷_ ) | |
32 | |
33 open Solvable (Symmetric 2) | 27 open Solvable (Symmetric 2) |
34 open import FLutil | |
35 open import Data.List.Fresh hiding ([_]) | |
36 open import Relation.Nary using (⌊_⌋) | |
37 | 28 |
38 p0id : FL→perm ((# 0) :: ((# 0) :: f0)) =p= pid | 29 p0id : FL→perm ((# 0) :: ((# 0) :: f0)) =p= pid |
39 p0id = pleq _ _ refl | 30 p0id = pleq _ _ refl |
40 | |
41 open import Data.List.Fresh.Relation.Unary.Any | |
42 open import FLComm | |
43 | 31 |
44 stage2FList : CommFListN 2 1 ≡ cons (zero :: zero :: f0) [] (Level.lift tt) | 32 stage2FList : CommFListN 2 1 ≡ cons (zero :: zero :: f0) [] (Level.lift tt) |
45 stage2FList = refl | 33 stage2FList = refl |
46 | 34 |
47 solved1 : (x : Permutation 2 2) → deriving 1 x → x =p= pid | 35 solved1 : (x : Permutation 2 2) → deriving 1 x → x =p= pid |