Mercurial > hg > Members > kono > Proof > galois
diff FLutil.agda @ 172:32e2097f5702
AnyFList
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Nov 2020 08:43:48 +0900 |
parents | 825b3237169c |
children | 715093a948be |
line wrap: on
line diff
--- a/FLutil.agda Mon Nov 23 19:24:12 2020 +0900 +++ b/FLutil.agda Tue Nov 24 08:43:48 2020 +0900 @@ -4,16 +4,16 @@ open import Level hiding ( suc ; zero ) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) -open import Data.Fin.Permutation +open import Data.Fin.Permutation -- hiding ([_,_]) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -open import Relation.Binary.PropositionalEquality +open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core -open import Relation.Binary.Definitions +open import Relation.Binary.Definitions open import logic open import nat @@ -132,7 +132,7 @@ open import Relation.Binary as B hiding (Decidable; _⇔_) open import Data.Sum.Base as Sum -- inj₁ open import Relation.Nary using (⌊_⌋) -open import Data.List.Fresh +open import Data.List.Fresh hiding ([_]) FList : (n : ℕ ) → Set FList n = List# (FL n) ⌊ _f<?_ ⌋ @@ -148,7 +148,7 @@ open import Data.Product open import Relation.Nullary.Decidable hiding (⌊_⌋) -open import Data.Bool hiding (_<_ ; _≤_ ) +-- open import Data.Bool hiding (_<_ ; _≤_ ) open import Data.Unit.Base using (⊤ ; tt) -- fresh a [] = ⊤ @@ -210,6 +210,9 @@ fr8 : FList 4 fr8 = ∀Flist fmax +fr9 : FList 3 +fr9 = ∀Flist fmax + open import Data.List.Fresh.Relation.Unary.Any open import Data.List.Fresh.Relation.Unary.All @@ -230,43 +233,22 @@ ∀list : FList n x∈∀list : (x : FL n ) → Any (x ≡_ ) ∀list -∀FList : (n : ℕ ) → ∀FListP n -∀FList zero = record { ∀list = f0 ∷# [] ; x∈∀list = af1 } where - af1 : (x : FL zero) → Any (_≡_ x) (cons f0 [] (Level.lift tt)) - af1 f0 = here refl -∀FList (suc n) with ∀FListP.∀list (∀FList n) | ∀FListP.x∈∀list (∀FList n) fmax -∀FList (suc n) | [] | () -∀FList (suc n) | cons A X FR | _ = record { ∀list = af4 n ≤-refl A X FR - ; x∈∀list = λ x → {!!} } where - af0 : ∀FListP n - af0 = ∀FList n - af3 : (w : Fin (suc n)) (x y : FL n) → Level.Lift Level.zero (True (x f<? y )) → (w :: x ) f< (w :: y ) - af3 w x y (Level.lift z) with x f<? y - ... | yes x<y = f<t x<y - af4 : (i : ℕ) → (i<n : i < suc n) - → (a : FL n) → (y : FList n) → fresh (FL n) ⌊ _f<?_ ⌋ a y - → FList (suc n) - af4r : (i : ℕ) → (i<n : i < suc n) - → (a a₁ : FL n) → a f< a₁ → (y : FList n) → (fr : fresh (FL n) ⌊ _f<?_ ⌋ a₁ y ) - → fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< i<n :: a) (af4 i i<n a₁ y fr) - af4 zero i<n a [] fr = cons (fromℕ< i<n :: a) [] (Level.lift tt) - af4 zero i<n a (cons a₁ y x) (lift p , fr) = - cons (fromℕ< i<n :: a) (af4 zero i<n a₁ y x ) (af4r zero i<n a a₁ (toWitness p) y x) - af4 (suc i) (s≤s i<n) a' [] fr' = af4 i (<-trans i<n a<sa) A X FR - af4 (suc i) (s≤s i<n) a (cons a₁ y x) (lift p , fr) = - cons (fromℕ< (s≤s i<n) :: a) ( af4 (suc i) (s≤s i<n) a₁ y x ) (af4r (suc i) (s≤s i<n) a a₁ (toWitness p) y x) - af4r zero i<n a a₁ a<a₁ [] fr = Level.lift (fromWitness (f<t a<a₁)) , Level.lift tt - af4r zero i<n a a₁ a<a₁ (cons a₂ y x) (lift p , _) = Level.lift (fromWitness (f<t a<a₁)) , af4r zero i<n a a₂ af41 y x where - af41 : a f< a₂ - af41 = f<-trans a<a₁ (toWitness p) - af4r (suc i) (s≤s i<n) a' a₁ a<a₁ [] (lift tt) = ttf af43 (af4 i (<-trans i<n a<sa) A X FR) (af4r i (<-trans i<n a<sa) a' A af44 X FR) where - af43 : (fromℕ< (s≤s i<n) :: a') f< (fromℕ< (<-trans i<n a<sa) :: a') - af43 = {!!} - af44 : a' f< A - af44 = {!!} - af4r (suc i) (s≤s i<n) a a₁ a<a₁ (cons a₂ y x) (lift p , _) = Level.lift (fromWitness (f<t a<a₁)) , af4r (suc i) (s≤s i<n) a a₂ af42 y x where - af42 : a f< a₂ - af42 = f<-trans a<a₁ (toWitness p) +open ∀FListP + +AnyFList : (n : ℕ ) → (x : FL n ) → Any (x ≡_ ) (∀Flist fmax) +AnyFList n x = AnyFlist0 fmax x where + AnyFlist1 : {n : ℕ } (i : ℕ) → (i<n : i < suc n ) → (x : Fin (suc n)) → toℕ x < suc i → (y : FL n) → (L L1 : FList n ) + → Any (y ≡_ ) L → Any ((x :: y ) ≡_ ) (Flist1 i i<n L L1 ) + AnyFlist1 zero i<n zero x<i y (cons y L ar) L1 (here refl) = x∈FLins (zero :: y) (Flist1 zero i<n L L1 ) + AnyFlist1 zero i<n (suc x) (s≤s ()) y (cons y L ar) L1 (here refl) + AnyFlist1 (suc i) i<n x x<i y (cons y L ar) L1 (here refl) = ? + AnyFlist1 i i<n x x<i y (cons a L ar) L1 (there any) = {!!} + AnyFlist0 : {n : ℕ } → (y x : FL n ) → Any (x ≡_ ) (∀Flist y) + AnyFlist0 {zero} f0 f0 = here refl + AnyFlist0 {suc n} (_ :: z) (x :: y) = AnyFlist1 n a<sa x fin<n y (∀Flist z) (∀Flist z) (AnyFlist0 z y) where + +-- tt1 : FList 3 +-- tt1 = ∀FListP.∀list (∀FList 3) -- FLinsert membership