diff sym3.agda @ 122:61310d395c1b

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 04 Sep 2020 17:05:15 +0900
parents 54035eed6b9b
children 465c42c9a99e
line wrap: on
line diff
--- a/sym3.agda	Fri Sep 04 12:37:54 2020 +0900
+++ b/sym3.agda	Fri Sep 04 17:05:15 2020 +0900
@@ -69,6 +69,9 @@
    p43=0 : ( p4  ∘ₚ p3 ) =p= pid
    p43=0 = pleq _ _ refl
 
+   pFL : ( g : Permutation 3 3) → { x : FL 3 } →  perm→FL g ≡ x → g =p=  FL→perm x
+   pFL g {x} refl = ptrans (psym (FL←iso g)) ( FL-inject refl ) 
+
    open ≡-Reasoning
 
    st01 : ( x y : Permutation 3 3) →   x =p= p3 →  y =p= p3 → x ∘ₚ  y =p= p4 
@@ -82,15 +85,14 @@
 
    st02 :  ( g h : Permutation 3 3) →  ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4)
    st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h
-   ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (record { peq = λ q → begin (
-          [ g , h ] ⟨$⟩ʳ q
-       ≡⟨ ( peq (comm-cong-l {h} {g} {pid} (FL-inject ge )) ) q ⟩
-          [ pid , h ] ⟨$⟩ʳ q
-       ≡⟨ peq (idcomtl h) q  ⟩
-          q
-       ∎ ) } )
-   ... | s | (zero :: (zero :: (zero :: f0))) | se |  record { eq = he } =
-          case1 (record { peq = λ q → trans (( peq (comm-cong-r {h} {g} {pid} (FL-inject he )) ) q) (peq (idcomtr g) q) } )
+   ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) )
+   ... | s | (zero :: (zero :: (zero :: f0))) | se |  record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) )
+   ... | (zero :: (suc zero) :: (zero :: f0 )) |  (zero :: (suc zero) :: (zero :: f0 )) |  record { eq = ge } |  record { eq = he } =
+         case1 (ptrans (comm-resp (pFL g  ge) (pFL h he) ) (comm-refl {FL→perm (zero :: (suc zero) :: (zero :: f0 ))} prefl ))
+   ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) |  record { eq = ge } |  record { eq = he } =
+         case1 (ptrans (comm-resp (pFL g  ge) (pFL h he) ) (comm-refl {FL→perm ((suc zero) :: (zero :: (zero :: f0 )))} prefl ))
+   ... | (suc zero) :: (suc zero :: (zero :: f0 )) |  (suc zero) :: (suc zero :: (zero :: f0 )) |  record { eq = ge } |  record { eq = he } =
+         case1 (ptrans (comm-resp (pFL g  ge) (pFL h he) ) (comm-refl {FL→perm ((suc zero) :: (suc zero :: (zero :: f0 )))} prefl ))
    ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!}
    ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!}
    ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!}