Mercurial > hg > Members > kono > Proof > galois
diff FL.agda @ 147:91a858f0b78f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 12 Sep 2020 22:18:30 +0900 |
parents | 173b0541c766 |
children | 1db02863ec58 |
line wrap: on
line diff
--- a/FL.agda Sat Sep 12 09:26:39 2020 +0900 +++ b/FL.agda Sat Sep 12 22:18:30 2020 +0900 @@ -176,16 +176,24 @@ FLinsert {suc n} x (cons a [] x₁) | inj₂ (case2 lt) with FLinsert x [] | inspect ( FLinsert x ) [] ... | [] | () ... | cons a₁ t x₂ | e = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) -FLinsert {suc n} x (cons a (cons a₁ y x₂) (lift a<a₁ , fr-ay)) | inj₂ (case2 lt) with FLinsert x (cons a₁ y x₂) +FLinsert {suc n} x (cons a (cons a₁ y x₂) (lift a<a₁ , fr-ay)) | inj₂ (case2 a<x) with total x a₁ +... | inj₁ (case1 refl) = cons a (cons a₁ y x₂) (Level.lift a<a₁ , fr-ay) +... | inj₂ (case1 refl) = cons a (cons a₁ y x₂) (Level.lift a<a₁ , fr-ay) +... | inj₁ (case2 x<a₁) = cons a (cons x (cons a₁ y x₂) ( Level.lift (fromWitness x<a₁) , ttf x<a₁ y x₂)) + ( Level.lift (fromWitness a<x) , ttf a<x (cons a₁ y x₂) ( Level.lift (fromWitness x<a₁) , ttf x<a₁ y x₂)) +... | inj₂ (case2 a₁<x) with FLinsert x y ... | [] = [] -... | cons a₂ t x₁ with total a₁ a₂ -... | inj₁ (case1 refl) = cons a (cons a₁ y x₂) (Level.lift a<a₁ , fr-ay) -... | inj₁ (case2 lt2) = cons a (cons a₂ t x₁) ( Level.lift (fromWitness a<a₂) , ttf a<a₂ t x₁) where - a<a₂ : a f< a₂ - a<a₂ = f<-trans (toWitness a<a₁) lt2 -... | inj₂ (case1 refl) = cons a (cons a₁ y x₂) (Level.lift a<a₁ , fr-ay) -... | inj₂ (case2 lt2) = cons a (cons a₂ t x₁) ( Level.lift (fromWitness a<a₂) , ttf a<a₂ t x₁) where - a<a₂ : a f< a₂ -- lt : a f< x - a<a₂ = {!!} +... | cons a₂ t x₁ = cons a ( cons a₁ ( cons a₂ t x₁ ) ( Level.lift (fromWitness ttf0) , ttf ttf0 t x₁)) + ( Level.lift a<a₁ , Level.lift (fromWitness ttf1) , ttf ttf1 t x₁ ) where + ttf0 : a₁ f< a₂ + ttf0 = ? + ttf1 : a f< a₂ + ttf1 = f<-trans (toWitness a<a₁) ttf0 + + +-- a₁<x : a₁ f< x +-- a<x : a f< x +-- a<a₁ : T (isYes (a f<? a₁ | FLcmp a a₁)) + fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1