Mercurial > hg > Members > kono > Proof > galois
diff Symmetric.agda @ 33:a986f22cde84
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 18:23:20 +0900 |
parents | 5b299203acf0 |
children | c9dbbe12a03b |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 16:37:59 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 18:23:20 2020 +0900 @@ -73,7 +73,7 @@ j ⟨$⟩ˡ q ∎ where open ≡-Reasoning -perm0 : Permutation zero zero +perm0 : {n : ℕ } → Permutation n n perm0 = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } open import Relation.Nullary @@ -81,6 +81,60 @@ open import Relation.Binary.Core open import fin +fperm0 : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) +fperm0 {n} perm = permutation p→ p← record { left-inverse-of = piso← ; right-inverse-of = {!!} } where + p→ : Fin (suc n) → Fin (suc n) + p→ x with <-cmp (toℕ x) n + p→ x | tri< a ¬b ¬c = fin+1 ( perm ⟨$⟩ˡ ( fromℕ≤ a )) + p→ x | tri≈ ¬a b ¬c = fromℕ≤ a<sa + p→ x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) + + p← : Fin (suc n) → Fin (suc n) + p← x with <-cmp (toℕ x) n + p← x | tri< a ¬b ¬c = fin+1 ( perm ⟨$⟩ʳ ( fromℕ≤ a )) + p← x | tri≈ ¬a b ¬c = fromℕ≤ a<sa + p← x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) + + piso← : (x : Fin (suc n)) → p← ( p→ x ) ≡ x + piso← x with <-cmp (toℕ x) n + piso← x | tri< a ¬b ¬c = begin + p← ( fin+1 (perm ⟨$⟩ˡ (fromℕ≤ a)) ) + ≡⟨ {!!} ⟩ + fin+1 ( perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ ( fromℕ≤ a )) ) + ≡⟨ cong (λ k → fin+1 k ) ( inverseʳ perm ) ⟩ + fin+1 (fromℕ≤ a) + ≡⟨ {!!} ⟩ + x + ∎ where + open ≡-Reasoning + piso← x | tri≈ ¬a b ¬c = begin + p← ( fromℕ≤ a<sa ) + ≡⟨ {!!} ⟩ + x + ∎ where open ≡-Reasoning + piso← x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) + +fswap : {n m : ℕ } → suc m < n → Permutation n n +fswap {n} {m} n<m = permutation p→ p→ record { left-inverse-of = piso← ; right-inverse-of = piso←} where + p→ : Fin n → Fin (n) + p→ x with <-cmp (toℕ x) m + p→ x | tri< a ¬b ¬c = x + p→ x | tri≈ ¬a b ¬c = fromℕ≤ {suc m} {n} n<m + p→ x | tri> ¬a ¬b c with <-cmp (toℕ x) (suc m) + p→ x | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = x + p→ x | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = fromℕ≤ {m} {n} (<-trans a<sa n<m) + p→ x | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = x + + piso← : (x : Fin (n)) → p→ ( p→ x ) ≡ x + piso← x with <-cmp (toℕ x) m + piso← x | tri< a ¬b ¬c = {!!} + piso← x | tri≈ ¬a b ¬c = {!!} + piso← x | tri> ¬a ¬b c with <-cmp (toℕ x) (suc m) + piso← x | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = {!!} + piso← x | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = {!!} + piso← x | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = {!!} + + fperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) fperm {zero} () fperm {suc n} {m} (s≤s m<n) perm = permutation p→ p← record { left-inverse-of = piso← ; right-inverse-of = piso→ } where