Mercurial > hg > Members > kono > Proof > galois
diff src/Gutil.agda @ 271:c209aebeab2a
Fundamental again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 16:40:39 +0900 |
parents | 6d1619d9f880 |
children | 386ece574509 |
line wrap: on
line diff
--- a/src/Gutil.agda Tue May 31 18:45:43 2022 +0900 +++ b/src/Gutil.agda Tue Jan 24 16:40:39 2023 +0900 @@ -128,3 +128,17 @@ (f ∙ g) ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G) +open import Tactic.MonoidSolver using (solve; solve-macro) + +lemma7 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ +lemma7 f g = begin + g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩ + g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩ + g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ solve monoid ⟩ + g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩ + g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ solve monoid ⟩ + (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ + (f ∙ g) ⁻¹ ∙ ε ≈⟨ solve monoid ⟩ + (f ∙ g) ⁻¹ + ∎ where open EqReasoning (Algebra.Group.setoid G) +